\(\Rightarrow x^8=x^{14-5}=x^9\\ \Rightarrow x^9-x^8=0\\ \Rightarrow x^8\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
\(\left(x^4\right)^2=\dfrac{x^{14}}{x^5}\Rightarrow x^8=\dfrac{x^{14}}{x^5}\)
\(\Rightarrow x^8:\dfrac{x^{14}}{x^5}=1\)
\(\Rightarrow\dfrac{x^{13}}{x^{14}}=1\Rightarrow\dfrac{1}{x}=1\Rightarrow x=1\)
Lời giải:
$(x^4)^2=\frac{x^{14}}{x^5}$
$x^8=x^9$
$x^8(1-x)=0$
$\Rightarrow x^8=0$ hoặc $1-x=0$
$\Leftrightarrow x=0$ hoặc $x=1$
Mà $x\neq 0$ nên $x=1$