-7/12≤x≤1/4
-7/12≤x≤3/12
x∈{-7/12;-6/12;-5/12;...;3/12}
Ta có: \(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{3}{4}\right)\le x\le\dfrac{1}{24}-\left(\dfrac{1}{8}-\dfrac{1}{3}\right)\)
\(\Leftrightarrow\dfrac{6}{12}-\dfrac{4}{12}-\dfrac{9}{12}\le x\le\dfrac{1}{24}-\dfrac{3}{24}+\dfrac{8}{24}\)
\(\Leftrightarrow\dfrac{-7}{12}\le x\le\dfrac{1}{4}\)
\(\Leftrightarrow x=0\)
\(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{3}{4}\right)\le x\le\dfrac{1}{24}-\left(\dfrac{1}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{1}{2}-\left(\dfrac{4}{12}+\dfrac{9}{12}\right)\le x\le\dfrac{1}{24}-\left(\dfrac{3}{24}-\dfrac{8}{24}\right)\)
\(\dfrac{1}{2}-\dfrac{13}{12}\le x\le\dfrac{1}{24}-\dfrac{-5}{24}\)
\(\dfrac{6}{12}-\dfrac{13}{12}\le x\le\dfrac{1}{24}+\dfrac{5}{24}\)
\(\dfrac{-7}{12}\le x\le\dfrac{6}{24}\)
\(\dfrac{-14}{24}\le x\le\dfrac{6}{24}\)
\(\Rightarrow x=\left\{\dfrac{-14}{24};\dfrac{-13}{24};\dfrac{-12}{24};...;\dfrac{6}{24}\right\}\)
\(\dfrac{6}{12}-\left(\dfrac{4}{12}+\dfrac{9}{12}\right)\text{≤}x\text{≤}\dfrac{1}{24}-\left(\dfrac{3}{24}-\dfrac{8}{24}\right)\)
⇒\(-\dfrac{7}{12}\text{≤}x\text{≤}\dfrac{3}{12}\)
⇒x∈(\(\dfrac{-7}{12};\dfrac{-6}{12};\dfrac{-5}{12};...;\dfrac{1}{12};\dfrac{2}{12};\dfrac{3}{12}\))
\(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{3}{4}\right)\le x\le\dfrac{1}{24}-\left(\dfrac{1}{8}-\dfrac{1}{3}\right)\)
<=> \(\dfrac{1}{2}-\dfrac{13}{12}\le x\le\dfrac{1}{24}-\left(\dfrac{-5}{24}\right)\)
<=> \(\dfrac{6}{12}-\dfrac{13}{12}\le x\le\dfrac{6}{24}\)
<=> \(\dfrac{-7}{12}\le x\le\dfrac{1}{4}\)
<=> \(\dfrac{-7}{12}\le x\le\dfrac{3}{12}\)
<=> x \(\in\left\{\dfrac{-7}{12};\dfrac{-6}{12};\dfrac{-5}{12};\dfrac{-4}{12};\dfrac{-3}{12};\dfrac{-2}{12};\dfrac{-1}{12};\dfrac{0}{12};\dfrac{1}{12};\dfrac{2}{12}\dfrac{3}{12}\right\}\)
<=> x \(\in\left\{\dfrac{-7}{12};\dfrac{-1}{2};\dfrac{-5}{12};\dfrac{-1}{3};\dfrac{-1}{4};\dfrac{-1}{6};\dfrac{-1}{12};0;\dfrac{1}{12};\dfrac{1}{6};\dfrac{1}{4}\right\}\)