Bài 5: Ôn tập chương Dãy số. Cấp số cộng và cấp số nhân.

SK
Hướng dẫn giải Thảo luận (1)

Xét cấp số cộng (un) với un+1 = un+ d, ta có: un+1 – un = d

+ un+1 > un nếu d > 0

+ un+1 < un nếu d < 0

Vậy cấp số cộng (un)

+ Tăng nếu d > 0

+ Giảm nếu d < 0

Trả lời bởi qwerty
SK
Hướng dẫn giải Thảo luận (1)

Ta có: un= u1.qn-1

a) Nếu

\(\left\{{}\begin{matrix}q>0\\u_1< 0\end{matrix}\right.\Rightarrow u_n< 0\forall n\)

b) Nếu

\(\left\{{}\begin{matrix}q< 0\\u_1< 0\end{matrix}\right.\)

Thì un < 0 khi n – 1 chẵn và un > 0 khi n – 1 lẻ.

Trả lời bởi qwerty
SK
Hướng dẫn giải Thảo luận (1)

Gọi (un) và (an) là hai cấp số cộng có công sai lần lượt là \(d_1\) và d2 và có cùng n số hạng.

Ta có:

un = u1 + (n -1) d1

an = a1 + (n – 1)d2

⇒ un + an = u1 + a1 + (n – 1).(d1 + d2)

Vậy un + an là cấp số cộng có số hạng đầu là u1 + a1 và công sai là d1 + d2

Ví dụ:

1, 3, 5, 7 ,.... là cấp số cộng có công sai d1 = 2

0, 5, 10, 15,.... là cấp số cộng có công sai d2 = 5

⇒ 1, 8, 15, 22 ,... là cấp số cộng có công sai là d = d1 + d2 = 2 + 5 = 7


 

Trả lời bởi Minh Hải
SK
Hướng dẫn giải Thảo luận (1)

a) Với n = 1, ta có:

13n – 1 = 131 – 1 = 12 ⋮ 6

Giả sử: 13k - 1 ⋮ 6 với mọi k ≥ 1

Ta chứng minh: 13k+1 – 1 chia hết cho 6

Thật vậy:

13k+1 – 1 = 13k+1 – 13k+ 13k -1 = 12.13k +13k – 1

Vì : 12.13k ⋮ 6 và 13k – 1 ⋮ 6

Nên : 13k+1 – 1 ⋮ 6

Vậy 13n -1 chia hết cho 6

b) Với n = 1, ta có: 3n3 + 15n = 18 ⋮ 9

Giả sử: 3(k + 1)3 + 15(k + 1) Ta chứng minh: 3(k + 1)3 + 15(k + 1) ⋮ 9

Thật vậy:

3(k + 1)3 + 15(k + 1) = 3. (k3 + 3k2 + 3k + 1) + 15(k + 1)

= 3k3 + 9k2 + 9k + 15k + 18

= 3k3 + 15k + 9(k2 + k + 2)

Vì 3(k + 1)3 + 15(k + 1) (giả thiết quy nạp) và 9(k2 + k + 2) ⋮ 9

Nên: 3(k + 1)3 + 15(k + 1) ⋮ 9

Vậy: 3n3 + 15n chia hết cho 9 với mọi n ∈ N*


Trả lời bởi Minh Hải
SK
Hướng dẫn giải Thảo luận (1)

an= a1. q1n-1, q1 là hằng số

bn= \(b_1q_2^{n-1}\), q2 là hằng số

Khi đó: an.bn = = a1. q1n-1. b1. q1n-1 = (a1b1)(q1q2)n-1

Vậy dãy số anbn là một cấp số nhân có công bội : q = q1q2

Ví dụ:

1, 2, 4 ,... là cấp số nhân có công bội q1 = 2

3, 9, 27, .... là cấp số nhân có công bội q2 = 3

⇒ Suy ra: 3, 8, 108.. là cấp số nhân có công bội: q = q1q2 = 2.3 = 6

 

Trả lời bởi Minh Hải
SK
Hướng dẫn giải Thảo luận (1)

a) Ta có:

u1 = 2, u2 = 2u1 – 1 = 3, u3 = 2u2 – 1= 5

u4 = 2u3 -1 = 9, u5 = 2u4 – 1= 10

b) Với n = 1, ta có: u1 = 21-1 + 1 = 2 : đúng

Giả sử công thức đúng với n = k. Nghĩa là: uk = 2k-1 + 1

Ta chứng minh công thức cũng đúng với n = k + 1,

Nghĩa là chứng minh:

Uk+1 = 2(k+1)-1 + 1 = 2k + 1

Ta có: uk+ 1 = 2uk – 1 = 2(2k -1+ 1) -1 = 2.2k -1 + 2 – 1 = 2k + 1 (đpcm)

Vậy un = 2n-1 + 1 với mọi n ∈ N*



Trả lời bởi Minh Hải
SK
Hướng dẫn giải Thảo luận (2)

Xét hiệu:

un+1−un=(n+1+1n+1)−(n+1n)=1+1n+1−1n=n2+n−1n(n+1)>0,∀n∈N∗un+1−un=(n+1+1n+1)−(n+1n)=1+1n+1−1n=n2+n−1n(n+1)>0,∀n∈N∗

Suy ra: un là dãy số tăng (1)

Mặt khác: un=n+1n≥2√n.1n=2∀n∈N∗un=n+1n≥2n.1n=2∀n∈N∗

Nên un là dãy số bị chặn dưới (2)

Ta thấy khi n càng lớn thì un càng lớn nên un là dãy số không bị chặn (3)

Từ (1), (2), (3) ta có un là dãy số tăng và bị chặn dưới.

b) Ta có:

u1 = (-1)0.sin1 = sin 1 > 0

u2=(−1)1.sin12=−sin12<0u3=(−1)2.sin13=sin13>0u2=(−1)1.sin⁡12=−sin⁡12<0u3=(−1)2.sin⁡13=sin⁡13>0

⇒ u1 > u2 và u2 < u3

Vậy un là dãy số tăng không đơn điệu.

Ta lại có:

|un|=|(−1)n−1.sin1n|=|sin1n|≤1⇔−1≤un≤1|un|=|(−1)n−1.sin⁡1n|=|sin⁡1n|≤1⇔−1≤un≤1

Vậy un là dãy số bị chặn và không đơn điệu.

c) Ta có:

un=√n+1−√n=n+1−n√n+1+√n=1√n+1+√nun=n+1−n=n+1−nn+1+n=1n+1+n

Xét hiệu:

un+1−un=1√(n+1)+1+√n+1−1√n+1+√n=1√n+2+√n+1−1√n+1+√nun+1−un=1(n+1)+1+n+1−1n+1+n=1n+2+n+1−1n+1+n

Ta có:

{√n+2>√n+1√n+1>√n⇒√n+2+√n+1>√n+1+√n{n+2>n+1n+1>n⇒n+2+n+1>n+1+n

⇒1√n+2+√n+1<1√n+1+√n⇒un+1−un<0⇒1n+2+n+1<1n+1+n⇒un+1−un<0

⇒ un là dãy số giảm (1)

Mặt khác:

un=1√n+1+√n>0,∀n∈N∗un=1n+1+n>0,∀n∈N∗

Suy ra: un là dãy số bị chặn dưới (2)

Ta lại có: với n ≥ 1 thì √n+1+√n≥√2+1n+1+n≥2+1

Nên un=1√n+1+√n≤1√2+1un=1n+1+n≤12+1

Suy ra: un là dãy số bị chặn trên (3)

Từ (1), (2) và (3) ta có: un là dãy số giảm và bị chặn



Trả lời bởi Minh Hải
SK
Hướng dẫn giải Thảo luận (1)

a) Ta có:

{5u1+10u=0S4=14{5u1+10u=0S4=14

⇔{5u1+10(u1+4d)=04(2u1+3d)2=14⇔{3u1+8d=02u1+3d=7⇔{u1=8d=−3⇔{5u1+10(u1+4d)=04(2u1+3d)2=14⇔{3u1+8d=02u1+3d=7⇔{u1=8d=−3

Vậy số hạng đầu u1 = 8, công sai d = -3

b) Ta có:

{u7+u15=60u24+u212=1170⇔{(u1+6d)+(u1+14d)=60(1)(u1+3d)2+(u1+11d)2=1170(2){u7+u15=60u42+u122=1170⇔{(u1+6d)+(u1+14d)=60(1)(u1+3d)2+(u1+11d)2=1170(2)

(1) ⇔ 2u1 + 20d = 60 ⇔ u1 = 30 – 10d thế vào (2)

(2) ⇔[(30 – 10D) + 3d]2 + [(30 – 10d) + 11d]2 = 1170

⇔ (30 – 7d)2 + (30 + d)2 = 1170

⇔900 – 420d + 49d2 + 900 + 60d + d2 = 1170

⇔ 50d2 – 360d + 630 = 0

⇔[d=3⇒u1=0d=215⇒u1=−12⇔[d=3⇒u1=0d=215⇒u1=−12

Vậy

{u1=0d=3{u1=0d=3

hay

{u1=−12d=215



Trả lời bởi Minh Hải
SK
Hướng dẫn giải Thảo luận (1)

a)

{u6=192u7=384⇔{u1.q5=192(1)u1.q6=384(2){u6=192u7=384⇔{u1.q5=192(1)u1.q6=384(2)

Lấy (2) chia (1): q = 2 thế vào (1):

(1) ⇔ u1.25 = 192 ⇔ u1 = 6

Vậy u1 = 6 và q = 2

b) Ta có:

{u4−u2=72u5−u3=144⇔{u1.q3−u1.q=72u1.q4−u1.q2=144⇔{u1.q(q2−1)=72(1)u1.q2(q2−1)=144(2){u4−u2=72u5−u3=144⇔{u1.q3−u1.q=72u1.q4−u1.q2=144⇔{u1.q(q2−1)=72(1)u1.q2(q2−1)=144(2)

Lấy 2 chia 1: q = 2 thế vào (1)

(1) ⇔2u1(4 – 1) = 72 ⇔ u1 = 12

Vậy u1 = 12 và q = 2

c) Ta có:

{u2+u5−u4=10u3+u6−u5=20⇔{u1.q+u1.q4−u1.q3=10u1.q2(q2−1)=144(2)⇔{u1q(1+q3−q2)=10(1)u1q(1+q3−q2)=20(2){u2+u5−u4=10u3+u6−u5=20⇔{u1.q+u1.q4−u1.q3=10u1.q2(q2−1)=144(2)⇔{u1q(1+q3−q2)=10(1)u1q(1+q3−q2)=20(2)

Lấy (2) chia (1): q = 2 thế vào (1)

(1) ⇔ 2u1 (1 + 8 – 4) = 10 ⇔ u1 = 1

Vậy u1 = 1 và q = 2


Trả lời bởi Minh Hải
SK
Hướng dẫn giải Thảo luận (1)

Theo giả thiết ta có: A, B, C, D là một cấp số nhân và C = 4A

Theo tính chất của cấp số nhân ta có:

B2 = AC = A.(4A) = 4A2 ⇒ B = 2A

C2 = BD ⇒ (4A)2 = (2A).D ⇒ D = 8A

Mặt khác: A + B + C + D = 3600

⇒ A + 2A + 4A + 8A = 3600

⇒ A = 240 ⇒ B = 480, C = 960, D = 1920.



Trả lời bởi Minh Hải