Cho đường tròn (O) và hai dây AB, AC. Gọi M, N lần lượt là điểm chính giữa của cung AB và AC. Đường thẳng MN cắt dây AB tại E và cắt dây AC tại H. Chứng minh tam giác AEH là tam giác cân.
Cho đường tròn (O) và hai dây AB, AC. Gọi M, N lần lượt là điểm chính giữa của cung AB và AC. Đường thẳng MN cắt dây AB tại E và cắt dây AC tại H. Chứng minh tam giác AEH là tam giác cân.
Cho đường tròn (O) và hai dây AB, AC bằng nhau. Trên cung nhỏ AC lấy một điểm M. Gọi S là giao điểm của AM và BC. Chứng minh \(\widehat{ASC}=\widehat{MCA}.\)
Ta có: \(\widehat{ASC}=\dfrac{sđ\left(\widehat{AB}-\widehat{MC}\right)}{2}\) (1)
(\(\widehat{ASC}\) là góc có đỉnh nằm bên ngoài đường tròn (O)) và \(\widehat{MCA}=\dfrac{sđ\widehat{AM}}{2}\) (2)
(góc nội tiếp chắn cung \(\widehat{AM}\))
Theo giả thiết thì:
AB = AC => \(\widehat{AB}\) = \(\widehat{AC}\) (3)
Từ (1), (2), (3) suy ra:
\(\widehat{AB}-\widehat{MC}=\widehat{AC}-\widehat{MC}=\widehat{AM}\)
Từ đó \(\widehat{ASC}=\widehat{MCA}\).
Trả lời bởi Quốc ĐạtTrên một đường tròn, lấy liên tiếp ba cung AC, CD, DB sao cho số đo cung AC bằng số đo cung CD bằng số đo cung DB và bằng 60o. Hai đường thẳng AC và BD cắt nhau tại E. Hai tiếp tuyến của đường tròn tại B và C cắt nhau tại T. Chứng minh rằng:
a) \(\widehat{AEB}=\widehat{BTC}.\)
b) CD là tia phân giác của \(\widehat{BCT}.\)
a) Ta có là góc có đỉnh ở bên ngoài đường tròn nên:
\(\widehat{AEB}=\dfrac{sđ\left(\widehat{AB}-\widehat{CD}\right)}{2}=\dfrac{180^O-60^O}{2}=60^O\)
và \(\widehat{BTC}\) cũng là góc có đỉnh ở bên ngoài đường tròn ( hai cạnh đều là tiếp tuyến của đường tròn) nên:
\(\widehat{BTC}\) = sđ\(\dfrac{\widehat{BAC}-\widehat{BDC}}{2}=\dfrac{\left(180^O+60^O\right)-\left(60^O+60^O\right)}{2}=60^O\)
Vậy =
b) \(\widehat{DCT}\) là góc tạo bởi tiếp tuyến và dây cung nên:
\(\widehat{DCT}=\dfrac{sđ\widehat{CD}}{2}=\dfrac{60^o}{2}=30^o\)
→ \(\widehat{DCB}\) là góc nội tiếp trên
\(\widehat{DCB}\) = \(\dfrac{sđ\widehat{DB}}{2}\) = \(\dfrac{60^O}{2}=30^O\)
Vậy \(\widehat{DCT}\) = \(\widehat{DCB}\) hay CD là phân giác của \(\widehat{BCT}\)
Trả lời bởi Quốc Đạt
Cho AB và CD là hai đường kính vuông góc của đường tròn (O). Trên cung nhỏ BD lấy một điểm M. Tiếp tuyến tại M cắt tia AB ở E, đoạn thẳng CM cắt AB ở S. Chứng minh ES = EM.
Ta có = (1)
( vì là góc có đỉnh S ở trong đường tròn (O))
= = (2)
( là góc tạo bởi tiếp tuyến và dây cung).
Theo giả thiết = (3)
Từ (1), (2), (3) ta có: = từ đó ∆ESM là tam giác cân và ES = EM
Trả lời bởi Nguyễn Đắc Định
Cho AB và CD là hai đường kính vuông góc của đường tròn (O). Trên cung nhỏ BD lấy một điểm M. Tiếp tuyến tại M cắt tia AB ở E, đoạn thẳng CM cắt AB ở S. Chứng minh ES = EM.
Ta có \(\widehat{MSE}\) = (1)
( vì \(\widehat{MSE}\) là góc có đỉnh S ở trong đường tròn (O))
\(\widehat{CME}\) = = (2)
(\(\widehat{CME}\) là góc tạo bởi tiếp tuyến và dây cung).
Theo giả thiết = (3)
Từ (1), (2), (3) ta có: \(\widehat{MSE}\)= \(\widehat{CME}\)từ đó \(\Delta\)ESM là tam giác cân và ES = EM
Trả lời bởi Lưu Hạ VyQua điểm S nằm bên ngoài đường tròn (O), vẽ tiếp tuyens SA và cát tuyens SBC của đường tròn. Tia phân giác của góc BAC cắt dây BC tại D. Chứng minh SA = SD.
Qua điểm A nằm bên ngoài đường tròn (O) vẽ hai cát tuyến ABC và AMN sao cho hai đường thẳng BN và CM cắt nhau tại một điểm S nằm bên trong đường tròn. Chứng minh \(\widehat{A}+\widehat{BSM}=2.\widehat{CMN}.\)
Cho tam giác ABC nội tiếp đường tròn. P, Q, R theo thứ tự là các điểm chính giữa của các cung bị chắn BC, CA, AB bởi các góc A, B, C.
a) Chứng minh \(AP\perp QR.\)
b) AP cắt CR tại I. Chứng minh tam giác CPI là tam giác cân.
a) Gọi giao điểm của AP và QR là K.
\(\widehat{AKR}\) là góc có đỉnh ở bên trong đường tròn nên
\(\widehat{AKR}\) = sđcung(AR +QC + CP)/2 =
Vậy \(\widehat{AKR}\) = 900 hay AP \(\perp\) QR
b) \(\widehat{CIP}\) là góc có đỉnh ở bên trong đường tròn nên:
\(\widehat{CIP}\) = sđcung(AR +CP)/2 (1)
\(\widehat{PIC}\) góc nội tiếp, nên \(\widehat{PIC}\)= (sđ cung RB + BP)/2 (2)
Theo giả thiết thì cung AR = RB (3)
Cung CP = BP (4)
Từ (1), (2), (3), (4) suy ra: \(\widehat{CIP}\) = \(\widehat{PIC}\). Do đó \(\Delta\)CPI cân.
Trả lời bởi Lưu Hạ Vy
Cho đường tròn (O) và hai day cung song song AB, CD (A và C nằm trong cùng một nửa mặt phẳng bờ BD) ; AD cắt BC tại I. Chứng minh \(\widehat{AOC}=\widehat{AIC}.\)
Theo giả thiết: cung AC = cung BD (vì AB // CD) (1)
\(\widehat{AIC}\) = sđ cung AC + cung BD : 2 (2)
Theo (1) suy ra \(\widehat{AIC}\) = sđ cung AC
\(\widehat{AOC}\) = sđ cung AC(góc ở tâm chắn cung AC)
So sánh (3), (4), ta có \(\widehat{AOC}\) = \(\widehat{AIC}\)
Trả lời bởi Lưu Hạ Vy
Các điểm \(A_1,A_2,....,A_{19},A_{20}\) được sắp xếp theo thứ tự đó trên đường tròn (O) và chia đường tròn thành 20 cung bằng nhau. Chứng minh rằng dây \(A_1A_8\) vuông góc với dây \(A_3A_{16}\)
Ta có: = (1)
= (2)
(Vì và là các góc có đỉnh cố định ở bên trong đường tròn).
Theo gỉả thiết thì:
Từ (1),(2), (3), (4), suy ra = do đó ∆AEH là tam giác cân.
Trả lời bởi Nguyễn Đắc Định