Bài 5: Góc có đỉnh bên trong đường tròn. Góc có đỉnh bên ngoài đường tròn.

SK

Trên một đường tròn, lấy liên tiếp ba cung AC, CD, DB sao cho số đo cung AC bằng số đo cung CD bằng số đo cung DB và bằng 60o. Hai đường thẳng AC và BD cắt nhau tại E. Hai tiếp tuyến của đường tròn tại B và C cắt nhau tại T. Chứng minh rằng:

a) \(\widehat{AEB}=\widehat{BTC}.\)

b) CD là tia phân giác của \(\widehat{BCT}.\)

QD
11 tháng 4 2017 lúc 11:50

a) Ta có là góc có đỉnh ở bên ngoài đường tròn nên:

\(\widehat{AEB}=\dfrac{sđ\left(\widehat{AB}-\widehat{CD}\right)}{2}=\dfrac{180^O-60^O}{2}=60^O\)

\(\widehat{BTC}\) cũng là góc có đỉnh ở bên ngoài đường tròn ( hai cạnh đều là tiếp tuyến của đường tròn) nên:

\(\widehat{BTC}\) = sđ\(\dfrac{\widehat{BAC}-\widehat{BDC}}{2}=\dfrac{\left(180^O+60^O\right)-\left(60^O+60^O\right)}{2}=60^O\)

Vậy =

b) \(\widehat{DCT}\) là góc tạo bởi tiếp tuyến và dây cung nên:

\(\widehat{DCT}=\dfrac{sđ\widehat{CD}}{2}=\dfrac{60^o}{2}=30^o\)

\(\widehat{DCB}\) là góc nội tiếp trên

\(\widehat{DCB}\) = \(\dfrac{sđ\widehat{DB}}{2}\) = \(\dfrac{60^O}{2}=30^O\)

Vậy \(\widehat{DCT}\) = \(\widehat{DCB}\) hay CD là phân giác của \(\widehat{BCT}\)

Bình luận (0)

Các câu hỏi tương tự
HL
Xem chi tiết
SK
Xem chi tiết
PU
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
KT
Xem chi tiết
KT
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết