Bài 3: Giải hệ phương trình bằng phương pháp thế

SK
Hướng dẫn giải Thảo luận (1)

a)\(\left\{{}\begin{matrix}3ax-\left(b+1\right)y=93\\bx+4ay=-3\end{matrix}\right.\)

có nghiệm \(\left(x;y\right)=\left(1;-5\right)\) ta thay \(x=1;y=-5\) vào hệ pt trên, ta có:

\(\left\{{}\begin{matrix}3a.1-\left(b+1\right).\left(-5\right)=93\\b.1+4a.\left(-5\right)=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3a+5b+5=93\\b-20a=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3a+5b=93-5\\-\left(20a-b\right)=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3a+5b=88\\20a-b=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3a+5b=88\\100a-5b=15\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}103a=103\\3a+5b=88\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=1\\3.1+5b=88\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=1\\5b=88-3=85\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=1\\b=17\end{matrix}\right.\)

vậy để hệ pt trên có nghiệm (1;-5) thì a=1; b=17.

b) \(\left\{{}\begin{matrix}\left(a-2\right)x+5by=25\\2ax-\left(b-2\right)y=5\end{matrix}\right.\)

có nghiệm (x; y) =(3; -1), ta thay x =3; y = -1 vào pt, ta có:

\(\left\{{}\begin{matrix}\left(a-2\right).3+5b.\left(-1\right)=25\\2a.3-\left(b-2\right).\left(-1\right)=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3a-6-5b=25\\6a+b-2=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3a-5b=25+6\\6a+b=5+2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3a-5b=31\\6a+b=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}6a-10b=62\\6a+b=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-11b=55\\6a+b=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=-5\\6.a-5=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=-5\\6a=7+5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=-5\\6a=12\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=-5\\a=2\end{matrix}\right.\)

Vậy hệ pt trên có nghiệm (3; -1) khi a=2, b=-5.

Trả lời bởi Lê Minh Thư
SK
Hướng dẫn giải Thảo luận (2)

Hai đường thẳng:

(d1): (3a – 1)x + 2by = 56 và (d2): Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 cắt nhau tại điểm M(2; -5) nên tọa độ của M là nghiệm của hệ phương trình: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Thay x = 2, y = -5 vào hệ phương trình, ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy khi a = 8, b = -1 thì hai đường thẳng (d1): (3a – 1)x + 2by = 56 và (d2): Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 cắt nhau tại điểm M(2; -5).

Trả lời bởi ✿✿❑ĐạT̐®ŋɢย❐✿✿
SK
Hướng dẫn giải Thảo luận (1)

a: Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}-5a+b=3\\\dfrac{3}{2}a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{8}{13}\\b=-\dfrac{1}{13}\end{matrix}\right.\)

b: Tọa độ giao điểm của (d1) và (d2) là;
\(\left\{{}\begin{matrix}2x+5y=17\\4x-10y=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=1\end{matrix}\right.\)

Vì (d3) đi qua M(9;-6) và N(6;1) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}6a-8=b\\9a+48=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6a-b=8\\9a-b=-48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{56}{3}\\b=-120\end{matrix}\right.\)

Trả lời bởi Nguyễn Lê Phước Thịnh
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)

để hệ phương trình có nghiệm là \(\left(x;y\right)=\left(1;-4\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-4b=17\\3b-4a=-29\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=4b+17\\3b-4\left(4b+17\right)=-29\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=4b+17\\3b-16b-68=-29\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=4b+17\\-13b=39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-3\\a=4.\left(-3\right)+17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=-3\\a=5\end{matrix}\right.\)

vậy \(a=5;b=-3\)

Trả lời bởi Mysterious Person
SK
Hướng dẫn giải Thảo luận (1)