tìm tất cả các stn( khác 0)x,y sao cho x+1 chia hết cho y và y+1 chia hết cho x
Tìm tất cả các STN x,y sao cho y+1 chia hết cho x và x+1 chia hết cho y
theo bài ra ta có:
y+1 chia hết cho x
=> y chia hết cho x
1 chia hết cho x\
=> x E Ư(1)={ 1 và -1 }
vậy x= 1;-1
x+1 chia hết cho y
=> x chia hết cho y
1 chia hết cho y
=> y E Ư(1)={ 1 và -1 }
tìm tất cả các số TN khác 0 x,y sao cho y+1 chia hết cho x và x+1 chia hết cho y
Tìm tất cả các số tự nhiên ( khác 0 ) x;y sao cho y + 1 chia hết cho x và x + 1 chia hết cho y
1 . tìm phân số tối giản a/b nhỏ nhất (với a/b >0 ) biết khi chia a/b cho 7/15 và 12/25 được thương là các số nguyên
2 . tìm tất cả các số tự nhiên ( khác 0 ) x,y sao cho y+1 chia hết cho x và x+1 chia hết cho y
Tìm tất cả các số tự nhiên x,y sao cho y+1 chia hết x và x+1 chia hết y
tìm tất cả các số tự nhiên x,y sao cho y +1 chia hết cho x, x+1 chia hết cho y
Bạn có thể tham khảo cách của mình:
Do vai trò bình đẳng của x,y nên ta có thể giả sử x>= y
-TH x=y:
x+1 chia hết cho y
<=> y+1 chia hết cho y
=> y thuộc ước của 1. Mà y thuộc N nên y=1. Do đó ta có x=1 (vì x=y)
Ta có cặp so (x;y)=(1;1)
-TH x>y:
Giả sử x-y=k (k thuộc N* vì x,y là số tự nhiên, x>y). Suy ra y=x-k
Thay vào ta có: y+1 chia hết cho x
<=> x-k+1 chia hết cho x
Do x>k nên x-k+1 > 0, x là số tự nhiên, x-k+1 chia hết cho x
<=> 1-k =0 hoặc >0
+Nếu 1-k=0 thì k=1
Thay vào ta có: x+1 chia hết cho y
<=>1+y+1 chia hết cho y <=> y + 2 chia hết cho y. Suy ra y thuộc ước của 2
=> y={1;2}. Vậy x={2;3} tương ứng.
Ta có cặp số x;y=(1;2);(2;3)
+Nếu 1-k>0:
Do k thuộc N* nên 1-k>0 là vô lý
Kết luận: Các cặp số (x;y) phải tìm: (1;1);(1;2);(2;1);(2;3);(3;2)
Vì vai trò của x, y bình đẳng nên có thể giả sử x≤yx≤y.
- Nếu x = 1 thì x+1=2⋮yx+1=2⋮y ⇒y=1⇒y=1 hoặc 2 ⇒(x,y)=(1,1),(1,2)⇒(x,y)=(1,1),(1,2).
- Nếu x≥2x≥2 thì 2≤x≤y2≤x≤y
Có ⎧⎨⎩x+1⋮yy+1⋮x{x+1⋮yy+1⋮x
⇒(x+1)(y+1)=(xy+x+y+1)⋮xy⇒(x+1)(y+1)=(xy+x+y+1)⋮xy ⇒(x+y+1)⋮xy⇒(x+y+1)⋮xy
⇒x+y+1xy=1x+1y+1xy⇒x+y+1xy=1x+1y+1xy là số nguyên dương.
Mà 2≤x≤y2≤x≤y nên 1x+1y+1xy≤12+12+14=541x+1y+1xy≤12+12+14=54
Từ đó suy ra 1x+1y+1xy=11x+1y+1xy=1 (1)
⇒1=1x+1y+1xy≤1x+1x+12x=52x⇒1=1x+1y+1xy≤1x+1x+12x=52x ⇒2x≤5⇒2x≤5 ⇒⇒ x = 2
Thay vào (1) ta có 12+1y+12y=112+1y+12y=1 ⇒y=3⇒y=3
Vậy các cặp số (x, y) phải tìm là (1, 1), (1, 2), (2, 1), (2, 3), (3, 2).
giả sử x≤yx≤y.
- Nếu x = 1 thì x+1=2⋮yx+1=2⋮y ⇒y=1⇒y=1 hoặc 2 ⇒(x,y)=(1,1),(1,2)⇒(x,y)=(1,1),(1,2).
- Nếu x≥2x≥2 thì 2≤x≤y2≤x≤y
Theo đề bài,
⇒(x+1)(y+1)=(xy+x+y+1)⋮xy⇒(x+1)(y+1)=(xy+x+y+1)⋮xy ⇒(x+y+1)⋮xy⇒(x+y+1)⋮xy
⇒x+y+1xy=1x+1y+1xy⇒x+y+1xy=1x+1y+1xy là số nguyên dương.
Mà 2≤x≤y2≤x≤y nên 1x+1y+1xy≤12+12+14=541x+1y+1xy≤12+12+14=54
Từ đó suy ra 1x+1y+1xy=11x+1y+1xy=1 (1)
⇒1=1x+1y+1xy≤1x+1x+12x=52x⇒1=1x+1y+1xy≤1x+1x+12x=52x ⇒2x≤5⇒2x≤5 ⇒⇒ x = 2
Thay vào (1) ta có 12+1y+12y=112+1y+12y=1 ⇒y=3⇒y=3
Vậy các cặp số (x, y) phải tìm là (1, 1), (1, 2), (2, 1), (2, 3), (3, 2
Bài 1: Cho 3 chữ số khác nhau và khác 0. Lập tất cả các số tự nhiên có ba chữ số gồm cả ba chữ số ấy. Chứng minh rằng tổng của chúng chia hết cho 6 và 37.
Bài 2: Có hai số tự nhiên x và y nào mà (x+y) . (x-y) = 1002 hay không?
Bài 3: Tìm các số tự nhiên a và b, sao cho a chia hết cho b và b chia hết cho a.
tìm tất cả các cặp số nguyên x,y với x>1 , y>1 sao cho 3x+1 chia hết cho y và 3y+1 chia hết cho x
tìm x, y khác 0 sao cho ( x^2+1) chia hết cho ( xy- 1)tìm x, y khác 0 sao cho ( x^2+1) chia hết cho ( xy- 1)
bạn cho mình hỏi x,y có là số tự nhiên không