Những câu hỏi liên quan
PD
Xem chi tiết
AH
29 tháng 12 2023 lúc 23:30

Lời giải:
$2x-xy+3y=9$

$\Rightarrow x(2-y)+3y=9$

$\Rightarrow x(2-y)-3(2-y)=3$

$\Rightarrow (2-y)(x-3)=3$
Do $x,y$ là số nguyên nên $2-y, x-3$ cũng là số nguyên. Mà tích của chúng bằng 3 nên ta có các TH sau:

TH1: $2-y=1, x-3=3\Rightarrow y=1, x=6$ (tm) 

TH2: $2-y=-1, x-3=-3\Rightarrow y=3; x=0$ (loại do $x$ nguyên dương) 

TH3: $2-y=3, x-3=1\Rightarrow y=-1$ (loại do $y$ nguyên dương)

TH4: $2-y=-3; x-3=-1\Rightarrow y=5; x=2$ (thỏa mãn)

Bình luận (0)
H24
Xem chi tiết
LC
3 tháng 5 2019 lúc 22:56

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

Bình luận (0)
TP
4 tháng 5 2019 lúc 14:36

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Bình luận (0)
CA
20 tháng 2 2021 lúc 17:33

LOADING...

Bình luận (0)
 Khách vãng lai đã xóa
KM
Xem chi tiết
CN
9 tháng 10 2018 lúc 21:27

Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1). 
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

Bình luận (0)
KS
9 tháng 10 2018 lúc 21:27

 Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

Bình luận (0)
HH
9 tháng 10 2018 lúc 21:34

Xét x= 1 => \(\dfrac{2}{y-1}\in\mathbb N\), từ đó có \(y=2\vee y=3\)

Xét y=1 => \(\dfrac{x^3+x}{x-1}=x^2+x+2+\dfrac{2}{x-1}\in\mathbb N\), từ đó có \(x=2\vee x=3\)

Xét \(x\ge 2\) hoặc \(y\ge 2\) . Ta có : \((x,xy-1)=1\). Do đó :

\(xy-1|x^3+x\Rightarrow xy-1|x^2+1\Rightarrow xy-1|x+y\)

=> \(x+y\ge xy-1\Rightarrow (x-1)(y-1)\le 2\). Từ đó có \((x-1)(y-1)=1\ \vee (x-1)(y-1)=2\) 

=> x = y = 2 ( loại ) hoặc x = 2 ; y = 3 hoặc x = 3 ; y= 2

Vậy các cặp số ( x;y ) thỏa mãn là (1;2),(2;1),(1;3),(3;1),(2;3),(3;2)

Bình luận (0)
NT
Xem chi tiết
LM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
YY
Xem chi tiết
NA
Xem chi tiết
H24
6 tháng 3 2018 lúc 15:10

PT tương đương:

\(x^3+y^3+1-3xy=0\)

\(\Leftrightarrow\left(x+y+1\right)\left(x^2+y^2+1-xy-x-y\right)=0\)

Mà: \(x,y\inℤ\)

Nên: \(x^3+y^3+1-3xy=0\)

\(\Leftrightarrow2x^2+2y^2+2-2xy-2x-2y=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow x=y=1\)

Vậy: x = y = 1.

Bình luận (0)
H24
6 tháng 3 2018 lúc 15:08

Ta có x3+y3=3xy-1

=> (x+y)3-3xy(x+y)-3xy+1=0

=>[(x+y)3+1]-3xy(x+y+1)=0

=>(x+y+1)[(x+y)2-x-y+1)]-3xy(x+y+1)=0

=>(x+y+1)(x2-xy+y2-x-y+1)=0

Vì x,y là các số nguyên dương nên x+y>0

=>x+y+1>1

=>x+y+1 khác 0

=>x2-xy+y2-x-y+1=0

=>2x2-2xy+2y2-2x-2y+2=0

=>(x-y)2+x2-2x+1+y2-2y+1=0

=>(x-y)2+(x-1)2+(y-1)2=0

=>(x-y)2 bé hơn hoặc bằng 0

    (y-1)2 bé hơn hoặc bằng 0

    (x-1)2 bé hơn hoặc bằng 0

Mà (x-y)lớn hơn hoặc bằng 0

      (x-1)2 lớn hơn hoặc bằng 0

      (y-1)2  lớn hơn hoặc bằng 0

=>(x-y)2=0

    (y-1)2=0

    (x-1)2=0

=>x=y=1

Bình luận (0)
H24
6 tháng 3 2018 lúc 15:11

\(x^3+y^3+1\ge3xy\)

Dấu "=" xảy ra khi x = y = 1. 

Bình luận (0)