Cho a/b là phân số tối giản. Chứng minh rằng phân số sau tối giản: a/a-b
Chứng minh rằng tổng của một phân số tối giản với một số tự nhiên cũng là môt phân số tối giản
cho phân số tối giản a/b ( a,b thuộc N, a<b , b khác 0 ) chứng tỏ rằng b-a/b cũng tối giản
Gỉa sử phân số \(\frac{b-a}{b}\)chưa tối giản. Như vậy b - a và b có ước chung là d > 1
Ta có b - a = dq1 (1) và b = dq2 (2) , trong đó q1 , q2 thuộc N và q2 > q1.
Từ (1) ; (2) suy ra a = d(q2 - q1 ) nghĩa là a cũng có ước là d.
Như vậy a và b có ước chung là d > 1 trái với giả thiết \(\frac{a}{b}\) là phân số tôi giản
Vậy nếu \(\frac{a}{b}\) tối giản thì \(\frac{b-a}{b}\) cũng tối giản
Chứng minh rằng phân số 2n+3/2n+5 là phân số tối giản.
\(\frac{2n+3}{2n+5}=\frac{2n+2+1}{2n+2+3}=\frac{2\left(n+1\right)+1}{2\left(n+1\right)+3}\)Ta thấy phân số trên có tử và mẫu là 2 số lẽ liên tiếp nên là phân số tối giản.
a,Cho a/b là phân số tối giản.Chứng minh rằng 8a+3b/5a+2b là phân số tối giản.
b,Rút gọn 199....99/99....995(ở tử có10 chỡ số9,ở mẫu có10 chữ số 9).
Chứng minh rằng phân số 12.n+1 /30.n+2 là tối giản ,n € N
Cho phân số a/b là phân số tối giản.hỏi phân số a/a+b có phải là phân số tối giản không
Chứng tỏ rằng phân số 2n+1/3n+2 là phân số tối giản
gọi d là ƯC(2n+1; 3n+2) (1)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+3\right)-\left(6n+4\right)⋮d\)
\(\Rightarrow6n+3-6n-4⋮d\)
\(\Rightarrow\left(6n-6n\right)-\left(4-3\right)⋮d\)
\(\Rightarrow0-1⋮d\)
\(\Rightarrow-1⋮d\)
\(\Rightarrow d=\pm1\) (2)
\(\left(1\right)\left(2\right)\RightarrowƯC\left(2n+1;3n+2\right)=\pm1\)
=> 2n+1/3n+2 là phân số tối giản
Chứng minh rằng\(\frac{14n+3}{21n+5}\) là phân số tối giản với mọi số nguyên n
Gọi d = ƯCLN ( 14n + 3 ; 21n + 5 )
Ta có :
14n + 3 \(⋮\)d ; 21n + 5 \(⋮\)d
=> 3 ( 14n + 3 ) \(⋮\)d ; 2 ( 21n + 5 ) \(⋮\)d
=> 42n + 9 \(⋮\)d ; 42n + 10 \(⋮\)d
=> ( 42n + 10 ) - ( 42n + 9 ) \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\){ 1 ; - 1 }
=> \(\frac{14n+3}{21n+5}\)là phân số tối giản
kho ng bi et
Chứng tỏ rằng phân số có dạng a+1 trên 3a + 4 là phân số tối giản
Gọi ƯC(a+1;3a+4)=d(d thuộc Z; d khác 0)
=> a+1 chia hết cho d => 3(a+1) chia hết cho d => 3a+3 chia hết cho d
và 3a+4 chia hết cho d
Suy ra (3a+4)-(3a+3) chia hết cho d
=> 3a+4-31-3 chia hết cho d
=>(3a-3a)+(4-3) chia hết cho d
=>1 chia hết cho d
=> d = 1 hoặc d=-1
=> ƯC(a+1;3a+4)= cộng trừ 1
Vậy a+1/3a+4 là phân số tối giản
Nếu bạn hiểu thì k cho mình nha :))