tim x biet /3x+4/=2/2x-7/
Tim xthuoc Z biet:
1,|2x-5|-|2x+9|=0
2,|x+1|-|x+2|-|3-x|=7
3,|2x+3|+|3x+2|-|4-x|=10
bai1.tim x biet:
a,(x+2).(x+3)-(x-2).(x+5)=0
b,(2x+3).(x-4)+(x-5).(x-2)=(3x-5).(x-4)
c,(8x-3).(3x+2)-(4x+7).(x+4)=(2x+1).(5x-1)=33
,(8x-3).(3x+2)-(4x+7).(x+4)=(2x+1).(5x-1)-33 đúng không bạn
tim x biet : a,-12/21×x + 3/7=-4/3, b, 2x +-3^2=5/4 , c, 75% x- 2/5=3/10, d, (3x-2)×(x+7)
tim x biet
(2x=1)^2 - 4(x=2)^2=9
3(x-1)^2 -3x(x-5)=1
3(x+2)^2+ (2x-1)^2 =7
7(x+3)(x-3)=36
giup mik voi tim x biet
1, 5-(3x+6)>-2x+1
2, -7.(x+2)-3x<6-11x
3, (x+1).(x+2)-x.(x+3)<4-x
4, 6-2x>17+(4-x)
tim x biet;6x^2-(2x+5)(3x-2)=7
\(6x^2-\left(2x+5\right)\left(3x-2\right)=7.\)
\(6x^2-\left(6x^2-4x+15x-10\right)=7\)
\(6x^2-6x^2+4x-15x+10=7\)
\(-11x+10=7\)
\(-11x=-3\)
\(x=\frac{-3}{-11}=\frac{3}{11}\)
\(6x^2-\left(2x+5\right)\left(3x-2\right)=7\)
\(6x^2-\left(6x^2-4x+15x-10\right)=7\)
+ Áp dụng quy tắc bở ngoặc ta có :
\(6x^2-6x^2+4x-15x+10=7\)
\(-11x+10=7\)
\(-11x=7-10\)
\(-11x=-3\)
\(x=-3:-11\)
\(x=\frac{-3}{-11}\)
\(\Rightarrow x=\frac{3}{11}\)
Vậy \(x=\frac{3}{11}\)
Chúc bạn học tốt !!!
tim x , y thuoc Z biet
a , 3x-xy+6y=4
b,x^2-3xy=2x-6y=7
tim x biet;(2x-1)(3x+1)+(3x-4)(3-2x)=5
ta co (2x-1)(3x+1)+(3x+4)(3-2x)=5
(=)6x2-3x+2x-1+6x-6x2+12-8x=5
(=)-4x+11=5
(=)-4x=-6
(=)x=3/2
(2x-1)(3x+1)+(3x-4)(3-2x)=5
<=> 6x2+2x-3x-1+9x-6x2-12+8x=5
<=> 16x-13=5
<=> 16x = 18
<=> x=9/8
Tim x biet
\(x^4-2x^3-2x^2+3x+2=0\)
\(x^4-2x^3-2x^2+3x+2=0\)
\(\Leftrightarrow x^4-2x^3-2x^2+4x-x+2=0\)
\(\Leftrightarrow\left(x^4-2x^3\right)-\left(2x^2-4x\right)-\left(x-2\right)=0\)
\(\Leftrightarrow x^3\left(x-2\right)-2x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-2x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-x-x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x^3-x\right)-\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[x\left(x^2-1\right)-\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x^2-x\right)\left(x+1\right)-\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2-x-1\right)=0\)
Đến đây ez r