Tìm các cặp số nguyên x,y sao cho (2x+2y)/(x^2+y^2)=6/25
Tìm tất cả các cặp số nguyên (x ,y ; ) sao cho (x+y)(3x+2y)2 = 2x + y -1
Lời giải:
Đặt $x+y=a; 3x+2y=b$ với $a,b\in\mathbb{Z}$ thì pt trở thành:
$ab^2=b-a-1$
$\Leftrightarrow ab^2+a+1-b=0$
$\Leftrightarrow a(b^2+1)+(1-b)=0$
$\Leftrightarrow a=\frac{b-1}{b^2+1}$
Để $a$ nguyên thì $b-1\vdots b^2+1$
$\Rightarrow b^2-b\vdots b^2+1$
$\Rightarrow (b^2+1)-(b+1)\vdots b^2+1$
$\Rightarrow b+1\vdots b^2+1$
Kết hợp với $b-1\vdots b^2+1$
$\Rightarrow (b+1)-(b-1)\vdots b^2+1$
$\Rightarrow 2\vdots b^2+1$
Vì $b^2+1\geq 1$ nên $b^2+1=1$ hoặc $b^2+1=2$
Nếu $b^2+1=1\Rightarrow b=0$. Khi đó $a=\frac{b-1}{b^2+1}=-1$
Vậy $x+y=-1; 3x+2y=0\Rightarrow x=2; y=-3$ (tm)
Nếu $b^2+1=2\Rightarrow b=\pm 1$
Với $b=1$ thì $a=\frac{b-1}{b^2+1}=0$
Vậy $x+y=0; 3x+2y=1\Rightarrow x=1; y=-1$ (tm)
Với $b=-1$ thì $a=-1$
Vậy $x+y=-1; 3x+2y=-1\Rightarrow x=1; y=-2$ (tm)
Tìm các cặp số nguyên \(\left(x,y\right)\) sao cho: \(3x^2-y^2-2xy-2x-2y+40=0\)
Ta đặt y = x + k với k \(\inℤ\)
Khi đó 3x2 - y2 - 2xy - 2x - 2y + 40 = 0
<=> 3x2 - (x + k)2 - 2x(x + k) - 2x - 2(x + k) + 40 = 0
<=> k2 + 4xk + 4x + 2k - 40 = 0
<=> (k + 1)2 + 4x(k + 1) = 41
<=> (k + 1)(4x + k + 1) = 41
Ta lập bảng ta được :
k + 1 | 1 | 41 | -1 | -41 |
4x + k + 1 | 41 | 1 | -41 | -1 |
x | 10 | -10 | -10 | 10 |
k | 0 | 40 | -2 | -42 |
lại có y = x + k
ta được các cặp (x;y) cần tìm là (10;10) ; (-10 ; 30) ; (-10 ; -12) ; (10;-32)
Tìm các cặp số nguyên (x,y) sao cho: 3x2-y2-2xy-2x-2y+40=0
3x^2-y^2-2xy-2x-2y+40=0
<=>(x-y)(3x+y)-(3x+y)+(x-y)+40=0
Đặt x-y=a: 3x+y=b
PT<=>ab+a-b-1=-41
<=>(b+1)(a-1)=-41
Đến đây bạn tự giải nốt nha. cho xin phát :)
nguyễn trí tâm tks bn
Tìm tất cả các cặp số nguyên (x,y) biết:
a)x(y-3)=6
b)(x-1).(y+2)=9
c)(2x-1).(2y+1)=-27
tìm các cặp x,y nguyên sao cho 2x2+3xy-2y2=7
\(2x^2+3xy-2y^2=7\)
\(\Leftrightarrow2x^2-xy+4xy-2y^2=7\)
\(\Leftrightarrow x\left(2x-y\right)+2y\left(2x-y\right)\)
\(\Leftrightarrow\left(x+2y\right)\left(2x-y\right)=7\)
Nếu 2x - y = 7 và x + 2y = 1 thì:
\(2\left(2x-y\right)+x+2y=15\)
\(\Leftrightarrow5x=15\)
\(\Leftrightarrow x=3;y=1\)( thỏa mãn )
Nếu 2x - y = 1 và x + 2y = 7 thì:
\(2\left(2x-y\right)+x+2y=9\)
\(\Leftrightarrow5x=9\Leftrightarrow x=\frac{9}{5}\)( loại )
Nếu 2x - y = -7 và x + 2y = -1 thì:
\(2\left(2x-y\right)+x+2y=-15\)
\(\Leftrightarrow5x=-15\)
\(\Leftrightarrow x=-3;y=1\)( thỏa mãn )
Nếu 2x - y = -1 và x + 2y = -7
\(\Leftrightarrow2\left(2x-y\right)+x+2y=-9\)
\(\Leftrightarrow5x=-9\Leftrightarrow x=\frac{-9}{5}\)( loại )
Tìm tất cả các cặp số nguyên (x;y) sao cho: x+2xy+2y+6=0
Tìm tất cả các cặp số nguyên (x;y) sao cho: x+2xy+2y+6=0
x+2xy+2y+6=0
x . (1 + 2y) + 2y + 6 = 0
x . (1 + 2y) + 2y + 1 = 5
(1 + 2y) . (x + 1) = 5
Phần còn lại làm đc nốt chưa
Tìm tất cả các cặp số nguyên (x,y) thỏa mãn : x^3-x^2y+2x-y=2
x^2y là sao bạn hình như sai ở chỗ đó
x^3-x^2.y+2x-y=2
=>x^2(x-y)+(x-y)+(x-2)=0
=>(x^2+1)(x-y)+(x-2)=0
Có x^2+1 >=0 với mọi x
để PT trên bằng 0 thì x-y=0 <=>x=y
Và x-2=0 <=> x=2
Vậy x=y=2 thì Pt đã cho bằng 0
Sợ không đúng thôi