Giá trị của ( x - y ) 2 biết
\(\frac{x}{y}\) = \(\frac{7}{4}\)và 4x - 5y = 72
Gía trị của ( x-y )^2 biết x/y = 7/4 và 4x - 5y = 72
\(\frac{x}{y}=\frac{7}{4}\Rightarrow\frac{x}{7}=\frac{y}{4}=\frac{4x}{28}=\frac{5y}{20}\) Áp dụng TC DTSBN ta có :
\(\frac{4x}{28}=\frac{5y}{20}=\frac{4x-5y}{28-20}=\frac{72}{8}=9\)
=> x = 63 ; y = 36
tìm x
\(\frac{x}{y}\)=\(\frac{-7}{4}\)và 4x-5y=72
kb vs mk nha
\(\frac{x}{y}=\frac{-7}{4}\Rightarrow4x=-7y\Rightarrow4x+7y=0\)
Ta có: \(4x-5y=72\Rightarrow4x+7y-12y=72\)
Thay 4x+7y=0 vào đẳng thức,ta có:\(0-12y=72\Rightarrow12y=-72\Rightarrow y=-6\)
\(\Rightarrow x=\frac{-7\times-6}{4}=10.5\)
tìm hai số x, y biết:
1/ -2x=5y và x+y=30
2/ 3x=5y và x+y=40
3/ 4x=5y và 3x-2y=35
4/ x:2=y:(-5) và x-y=7
5/ \(\frac{x}{19}\)=\(\frac{y}{21}\) và 2x-y=34
1. -2x=5y =>\(\frac{x}{y}=\frac{-5}{2}=>y=\frac{-2x}{5}\)
Thế y=\(\frac{-2x}{5}\) ta được:
x+\(\frac{-2x}{5}\)=30 \(\Rightarrow\frac{5x-2x}{5}=30\)
\(\Rightarrow3x=150\)\(\Rightarrow x=50\)
=>y=30-x=30-50=-20.
Vậy x=50; y=-20.
Những bài khác tương tự bạn nhé!
bạn kia làm đúng rồi
k tui nha
thank
Cho x,y là số nguyên dương thỏa mãn \(\frac{4x}{2^{x+y}}=8\) và \(\frac{9x+y}{3^{5y}}\).Tính giá trị của x;y
Độ dài cạnh của tam giác bằng 7 cm và 13 cm
Mà tam giác này cân
=> Cạnh còn lại của tam giác là 7 cm ( Dựa vào bất đẳng thức tam giác 0
Chu ci tam giác là :
7 + 13 + 7 = 27 ( cm )
Vậy chu vi tam giác đó là ; 27 cm
TH1:Cạnh đáy bằng 7 cm
Chu vi của hình tam cân đó là :
13x2+7=33(cm)
TH2:Cạnh đáy bằng 13 cm
Chu vi của hình tam giác cân đó là :
7x2+13=27(cm)
Gọi cạnh chưa biết là x
Ta có: 7 - 3 < x < 7 + 3 ( Bất đẳng thức tam giác )
\(\Leftrightarrow\)4 < x < 10
=> x = 7 ( nếu x = 3 thì 4 < 3 < 10 )
Vậy chu vi của tam giác đó là :
7 + 7 + 3 = 17 ( cm )
Đáp số : 17 cm
Tìm x,y biết:
x/-3=y/8 và x^2 - y^2=-44/5
x/y=-7/4 và 4x-5y=72
Ta có: \(\frac{x}{y}=\frac{-7}{4}\Rightarrow\frac{x}{-7}=\frac{y}{4}\)
Suy ra \(\frac{4x}{-28}=\frac{5y}{20}\)
Áp dụng tính chất dãy các tỉ số bằng nhau, ta có:
\(\frac{4x}{-28}=\frac{5y}{20}=\frac{4x-5y}{-28-20}=\frac{-3}{2}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{-3}{2}.\left(-7\right)=\frac{21}{2}\\y=\frac{-3}{2}.4=-6\end{cases}}\)
Vậy \(x=\frac{21}{2}\) và y = -6
đặt \(\frac{x}{-3}=\frac{y}{8}=k\) \(\Rightarrow x=-3k;y=8k\)
\(x^2-y^2=-\frac{44}{5}\)\(\Leftrightarrow\left(-3k\right)^2-\left(8k\right)^2=9k^2-64k^2=-55k^2=\frac{-44}{5}\)
\(\Rightarrow k^2=\frac{4}{25}\Rightarrow k=\pm\frac{2}{5}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-6}{5};y=\frac{16}{5}\\x=\frac{6}{5};y=\frac{-16}{5}\end{cases}}\)
a)\(\frac{x}{-3}=\frac{y}{8}\Leftrightarrow\left[\frac{x^2}{\left(-3\right)^2}\right]=\left(\frac{y^2}{8^2}\right)\Leftrightarrow\frac{x^2}{9}=\frac{y^2}{64}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{64}=\frac{x^2-y^2}{9-64}=\frac{\frac{-44}{5}}{-55}=\frac{4}{25}\)
\(\Rightarrow\hept{\begin{cases}\frac{x^2}{9}=\frac{4}{25}\\\frac{y^2}{64}=\frac{4}{25}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{9.4}{25}=\frac{36}{25}\\y^2=\frac{64.4}{25}=\frac{256}{25}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\sqrt{\frac{36}{25}}=\frac{6}{5}\\y=\sqrt{\frac{256}{25}}=\frac{16}{5}\end{cases}}\)
b)\(\frac{x}{y}=\frac{-7}{4}\Leftrightarrow\frac{x}{-7}=\frac{y}{4}\Leftrightarrow\frac{4x}{-28}=\frac{5y}{20}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{4x}{-28}=\frac{5y}{20}=\frac{4x-5y}{-28-20}=\frac{72}{-48}=\frac{-3}{2}\)
\(\Rightarrow\hept{\begin{cases}\frac{4x}{-28}=\frac{-3}{2}\\\frac{5y}{20}=\frac{-3}{2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4x=\frac{\left(-28\right)\left(-3\right)}{2}=42\\5y=\frac{20\left(-3\right)}{2}=-30\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{42}{4}=\frac{21}{2}\\y=-\frac{30}{5}=6\end{cases}}\)
HOK TOT
1. tìm x, y biết:
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
2. Cho \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)
Tìm giá trị của: A=\(\frac{x-y+z}{x+2y-z}\)
Giúp mình với, mai mình học rùi. THanks các ban nhìu
Bài 1:
Giải:
Ta có: \(\frac{1+3y}{12}=\frac{1+7y}{4x}=\frac{1+1+3y+7y}{12+4x}=\frac{2+10y}{2\left(6+2x\right)}=\frac{2\left(1+5y\right)}{2\left(6+2x\right)}=\frac{1+5y}{6+2x}=\frac{1+5y}{5x}\)
+) Xét \(1+5y=0\Rightarrow y=\frac{-1}{5}\Rightarrow1+5y=0\) ( loại )
+) Xét \(1+5y\ne0\Rightarrow6+2x=5x\)
\(\Rightarrow5x-2x=6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
Mà \(\frac{1+3y}{12}=\frac{1+5y}{5x}\)
\(\Rightarrow\frac{1+3y}{12}=\frac{1+5y}{10}\)
\(\Rightarrow10\left(1+3y\right)=12\left(1+5y\right)\)
\(\Rightarrow10+30y=12+60y\)
\(\Rightarrow10-12=60y-30y\)
\(\Rightarrow-2=30y\)
\(\Rightarrow y=\frac{-1}{15}\)
Vậy \(x=2,y=\frac{-1}{15}\)
Tìm 2 số x; y biết rằng:
a)\(\hept{\begin{cases}\frac{x}{4}=\frac{y}{-5}\\-3x+2y=55\end{cases}}\).
b)\(\hept{\begin{cases}\frac{x}{y}=\frac{-7}{4}\\4x-5y=72\end{cases}}\).
c)\(\hept{\begin{cases}\frac{x}{-3}=\frac{y}{8}\\x^2-y^2=\frac{-44}{5}\end{cases}}\).
d)\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{-3}\\3x^3+y^3=\frac{64}{9}\end{cases}}\).
Tìm x, y, z biết:
a) \(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\)và x+y-z=69
b) 2x=3y, 5y=72 và 3x+5y-7z=30
c)\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)và 5z-3x-4y=50
Ai bt câu nào thì giúp mk nha, mk tick, cảm ơn m pạn trước nhé!
a )
Ta có :
\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{cases}}}\)
và \(x+y-z=69\)
ADTCDTSBN , ta có :
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=3\\\frac{y}{24}=3\\\frac{z}{21}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3.20=60\\y=3.24=72\\z=3.21=63\end{cases}}}\)
Vậy ...
b )
Ta có :
\(5y=72\Rightarrow y=\frac{72}{5}=14,4\)
\(\Rightarrow x=14,4.3:2=21,6\)
và \(3x+5y-7z=30\)
Thay vào làm tiếp :
c )
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)
\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)
\(=\frac{5z-25-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)( ADTCDTSBN )
\(=\frac{5z-25-3x+3-4y-12}{8}=\frac{5z-3x-4y-34}{8}\)
\(=\frac{50-34}{8}=\frac{16}{8}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=2\\\frac{y+3}{4}=2\\\frac{z-5}{6}=2\end{cases}\Rightarrow\hept{\begin{cases}x-1=2.2=4\\y+3=2.4=8\\z-5=2.6=12\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=5\\z=17\end{cases}}}\)
Vậy ...
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
1/ Xác định hệ số a và b sao cho \(\left(x^4+ax^3+b\right)⋮\left(x^2-1\right)\)
2/ Tìm \(n\inℕ\)để \(-7x^{n+1}y^6⋮4x^5y^n\)
3/ Tìm x và y biết: \(\frac{\left(x-2y\right)\left(x-7y\right)-x^2-4y^2}{x-2y}=18\)
4/ CMR: Giá trị biểu thức A không âm với mọi \(x\ne0\)của x và y: \(A=\frac{75x^5y^2-45x^4y^3}{3x^3y^2}-\frac{\frac{5}{2}x^2y^4-2xy^5}{\frac{1}{2}xy^2}\)
5/ Tìm GTNN của thương: \(\frac{4x^5+4x^4+4x^3-x-1}{2x^3+x-1}\)
6/ Tìm các \(x\inℤ\)để thương \(\frac{2x^5+4x^4-7x^3-44}{2x^3-7}\)có giá trị nguyên.
7/ CMR: Không tồn tại số \(n\inℕ\)để \(\left(n^6-n^4-2n+9\right)⋮\left(n^4+n^2\right)\)
Các bạn giúp mình một trong 7 bài này cũng được nhen. Giúp mình nhen! Mình sắp đi học rồi.