Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
AH
10 tháng 7 2021 lúc 11:39

Lời giải:

Giả sử pt đã có nghiệm nguyên.
Ta biết rằng 1 số chính phương khi chia 4 dư $0,1$

Mà $x^2+y^2+z^2=2015\equiv 3\pmod 4$ nên $(x^2,y^2,z^2)$ chia $4$ dư $1,1,1$. Do đó $x,y,z$ đều lẻ.

Đặt $x=2m+1; y=2n+1, z=2p+1$ với $m,n,p$ nguyên

$x^2+y^2+z^2=2015$

$\Leftrightarrow (2m+1)^2+(2n+1)^2+(2p+1)^2=2015$

$\Leftrightarrow 4m(m+1)+4n(n+1)+4p(p+1)=2012$

$\Leftrightarrow m(m+1)+n(n+1)+p(p+1)=503$

Điều này vô lý vì mỗi số $m(m+1), n(n+1), p(p+1)$ đều chẵn.

Vậy điều giả sử sai, hay pt đã cho không có nghiệm nguyên.

Bình luận (0)
NL
Xem chi tiết
LQ
22 tháng 9 2017 lúc 20:30

tk nha 

Bình luận (0)
NL
22 tháng 9 2017 lúc 20:40

là sao

Bình luận (0)
LN
Xem chi tiết
H24
Xem chi tiết
NT
2 tháng 7 2021 lúc 22:52
Bạn xem thử nha

Bài tập Tất cả

Bình luận (0)
 Khách vãng lai đã xóa
NT
2 tháng 7 2021 lúc 22:56
Bạn xem thử nha:))

Bài tập Tất cả

Bình luận (0)
 Khách vãng lai đã xóa
LL
Xem chi tiết
H24
Xem chi tiết
AH
25 tháng 11 2023 lúc 17:49

Lời giải:

$7x^2-24y^2=41$

$\Rightarrow 7x^2=41+24y^2\equiv 41\equiv 2\pmod 3(1)$
Nếu $x$ nguyên thì $x^2$ là scp. Ta biết 1 scp khi chia 3 dư $0,1$

$\Rightarrow x^2\equiv 0,1\pmod 3$

$\Rightarrow 7x^2\equiv 0, 7\equiv 0,1\pmod 3$
Nghĩa là $7x^2$ chia 3 dư $0$ hoặc $1$ (2)

$(1); (2)$ mâu thuẫn nhau nên pt không có nghiệm nguyên.

 

Bình luận (0)
H24
Xem chi tiết
LP
25 tháng 11 2023 lúc 19:27

 Cách khác (xét theo mod 8): Giả sử tồn tại 2 số nguyên x, y thỏa mãn \(7x^2-24y^2=41\) 

\(\Leftrightarrow7x^2-24y^2=48-7\)

\(\Leftrightarrow7\left(x^2+1\right)=24\left(y^2+2\right)\) (*)

 Do \(\left(7,24\right)=1\) nên từ (*), ta có \(x^2+1⋮24\) \(\Rightarrow x^2+1⋮8\)

 Từ đó x phải là số lẻ. Nhưng nếu như vậy thì \(x^2\equiv1\left[8\right]\) dẫn đến \(x^2+1\equiv2\left[8\right]\), vô lí.

 Vậy điều giả sử là sai \(\Rightarrow\) pt đã cho không có nghiệm nguyên.

 

 

Bình luận (0)
H24
Xem chi tiết
AH
25 tháng 11 2023 lúc 17:49

Lời giải:

$7x^2-24y^2=41$

$\Rightarrow 7x^2=41+24y^2\equiv 41\equiv 2\pmod 3(1)$
Nếu $x$ nguyên thì $x^2$ là scp. Ta biết 1 scp khi chia 3 dư $0,1$

$\Rightarrow x^2\equiv 0,1\pmod 3$

$\Rightarrow 7x^2\equiv 0, 7\equiv 0,1\pmod 3$
Nghĩa là $7x^2$ chia 3 dư $0$ hoặc $1$ (2)

$(1); (2)$ mâu thuẫn nhau nên pt không có nghiệm nguyên.

 

Bình luận (0)
MT
Xem chi tiết
TL
15 tháng 1 2016 lúc 13:05

bạn ơi =12345678

tích cho mình nhé!

Bình luận (0)