Những câu hỏi liên quan
TH
Xem chi tiết
DH
20 tháng 2 2016 lúc 11:23

Gọi d là ƯCLN ( n + 1 ; 2n + 3 )

=> n + 1 ⋮ d => 2.( n + 1 ) ⋮ d => 2n + 2 ⋮ d ( 1 )

=> 2n + 3 ⋮ d => 1.( 2n + 3 ) ⋮ d => 2n + 3 ⋮ d ( 2 )

Từ ( 1 ) và ( 2 ) => [ ( 2n + 3 ) - ( 2n + 2 ) ] ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN ( 

Bình luận (0)
DH
20 tháng 2 2016 lúc 11:25

Đang làm dở làm tiếp : 

Vì ƯCLN ( n+1;2n+3 ) = 1 nên n+1/2n+3 tối giản

Bình luận (0)
NT
17 tháng 2 2023 lúc 20:13

Hỏi một đằng làm một lẻo

Bình luận (0)
TA
Xem chi tiết
H24
Xem chi tiết
H24
19 tháng 7 2018 lúc 12:46

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n+1\right).\left(2n+3\right)}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{\left(2n+1\right)}-\frac{1}{\left(2n+3\right)}\)

\(1-\frac{1}{\left(2n+3\right)}\)

cách làm này ko biết sai hay đúng nên hãy cẩn thận

Bình luận (0)
TT
19 tháng 7 2018 lúc 12:50

hơi khó bn ơi

Bình luận (0)
H24
19 tháng 7 2018 lúc 12:51

kết quả cuối cùng tự tính nhé

Bình luận (0)
NP
Xem chi tiết
NP
31 tháng 3 2016 lúc 15:40

a) Gọi d= ƯCLN (n+1;2n+3)

Ta có: n+1 chia hết cho d hay 2n+2 chia hết cho d

2n+3 chia hết cho d

suy ra: (2n+3)-(2n+2) chai hết cho d

hay: 1 chia hết cho d

suy ra: d=1

vậy n+1 / 2n+3 là p/s tối giản với mọi n thuộc N

b) Gọi d= ƯCLN ( 2n+3; 4n+8)

Ta có: 2n+3 chia hết cho d hay 4n+6 chia hết cho d

4n+8 chia hét cho d

suy ra : (4n+8)-(4n+6) chia hết cho d

hay: 2 chia hết cho d

suy ra: d=1;2

Nếu d=2 thì 2n+3 chia hết cho 2

hay: 3 chia hết cho 2

Vậy d=1 

suy ra : 2n+3 / 4n+8 là p/s tối giản với mọi n thuộc N

ai t ick mk mk t ick lại

Bình luận (0)
HA
Xem chi tiết
HP
27 tháng 2 2016 lúc 22:45

Gọi (2n+1;2n(n+1))=d

=>2n+1 chia hết cho d;2n2+2n chia hết cho d

=>2n+1 chia hết cho d;2nn+n+n chia hết cho d

=>2n+1 chia hết cho d;n(2n+1)+n chia hết cho d

Mà n(2n+1) chia hết cho d

=>2n+1 chia hết cho d;n chia hết cho d

=>2n+1 chia hết cho d;2n chia hết cho d

=>(2n+1)-2n chia hết cho d

=>1 chia hết cho d

=>d=1

=>(2n+1;2n(n+1))=1

Vậy 2n+1/2n(n+1) là phân số tối giản (đpcm)

Bình luận (0)
NL
Xem chi tiết
AH
5 tháng 2 2024 lúc 23:28

a/

Gọi $d=ƯCLN(n+1, 2n+3)$

$\Rightarrow n+1\vdots d; 2n+3\vdots d$

$\Rightarrow 2n+3-2(n+1)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$

Bình luận (0)
AH
5 tháng 2 2024 lúc 23:32

b/

Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé. 

Bạn xem lại đề.

Bình luận (0)
NT
Xem chi tiết
DP
Xem chi tiết
TD
8 tháng 6 2017 lúc 8:39

gọi ( n3 + 2n ; n4 + 3n2 + 1 ) = d

\(\Leftrightarrow\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n^4+2n^2⋮d\\n^4+3n^2+1⋮d\end{cases}\Leftrightarrow n^2+1⋮d}\)

Mà n4 + 3n2 + 1 \(⋮\)d

= n4 + 2n2 + n2 + 1

= ( n4 + 2n2 + 1 ) + n2 

= ( n2 + 1 ) 2 + n2 \(⋮\)d

\(\Rightarrow\)n2 \(⋮\)d

\(\Leftrightarrow\)\(⋮\)d

Bình luận (0)
H24
8 tháng 6 2017 lúc 8:33

Tham khảo nha bạn! Mình không có thời gian!

Link:

tth 

Đs

Bình luận (0)
H24
8 tháng 6 2017 lúc 8:53

Gọi a là ước chung của n^3 +2n và n^4 + 3n^2 + 1

n^3 + 2n chia hết cho a => n(n^3 + 2n) chia hết cho a = > n^4 + 2n^2 chia hết cho a (1)

n^4 + 3n^2 + 1 - (n^4 + 2n^2 )= n^2 +1 chia hết cho a = > (n^2 + 1) ^ 2 = n^4 + 2n^2 + 1  chia hết cho d (2)

Từ (1) và (2), suy ra:

(n^4 + 2n^2 + 1) - (n^4 + 2n ^2 ) chia hết cho a = > 1 chia hết cho a = > a = + - 1

Vậy phân số trên tối giản vì mẫu tử có ước chung là n + 1

Bình luận (0)
NA
Xem chi tiết
NH
21 tháng 2 2017 lúc 12:41

Đặt UC(n+2,2n+3)=d

Ta có: 

\(\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}2\left(n+2\right)-\left(2n+3\right)⋮d\Rightarrow1⋮d\Rightarrow1=d\)

Vậy phân số tối giản

Bình luận (0)
H24
21 tháng 2 2017 lúc 12:39

gọi ucln của n+2va 2n+3 là d

ta có:

n+2=2n+4;2n+3 du nguyen

2n+4-2n+3

=>1chia het cho d

vi d la ucln cua 1=>d=1

=>do la phan so toi gian

Bình luận (0)