Những câu hỏi liên quan
HQ
Xem chi tiết
TN
24 tháng 8 2020 lúc 11:13

Ta có:

\(x\) và \(x^5\) có cùng tính chẵn - lẻ (cùng tính chẵn - lẻ nghĩa là nếu \(x\) lẻ thì \(x^5\) lẻ, còn nếu \(x\) chẵn thì \(x^5\) cũng chẵn luôn)

\(y\) và \(y^3\) có cùng tính chẵn - lẻ

\(\left(x+y\right)\) và \(\left(x+y\right)^2\) có cùng tính chẵn - lẻ

Vậy \(x^5+y^3-\left(x+y\right)^2\) và \(x+y-\left(x+y\right)\) có cùng tính chẵn - lẻ

Trong mọi trường hợp, dù \(x\) và \(y\) lẻ hay chẵn thì kết quả luôn là số chẵn\(\Rightarrow3z^3\) là số chẵn\(\Rightarrow z\) phải là số chẵn mà 2 là số nguyên tố chẵn duy nhất\(\Rightarrow z=2\)

\(\Rightarrow x^5+y^3-\left(x+y\right)^2=3\cdot2^3=24\)

Chỉ khi \(x=y=2\) thì phương trình trên mới hợp lí.

Vậy \(x=y=2\)

Đáp số: \(x=y=z=2\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
6 tháng 3 2021 lúc 13:12
x và x5 có cùng tính chẵn - lẻ (cùng tính chẵn - lẻ nghĩa là nếu x lẻ thì x5 lẻ, còn nếu x chẵn thì x5 cũng chẵn luôn) y và y3 có cùng tính chẵn - lẻ (x+y) và (x+y)2 có cùng tính chẵn - lẻ Vậy x5+y3−(x+y)2 và x+y−(x+y) có cùng tính chẵn - lẻ Trong mọi trường hợp, dù x và y lẻ hay chẵn thì kết quả luôn là số chẵn ⇒3z3 là số chẵn ⇒z phải là số chẵn mà 2 là số nguyên tố chẵn duy nhất ⇒z=2 ⇒x5+y3−(x+y)2=3·23=24 Chỉ khi x=y=2 thì phương trình trên mới hợp lí. Vậy x=y=2 x=y=z=2
Bình luận (0)
 Khách vãng lai đã xóa
HK
6 tháng 3 2021 lúc 19:45

k cho mình nhế

Bình luận (0)
 Khách vãng lai đã xóa
LP
Xem chi tiết
H24
Xem chi tiết
WR
7 tháng 7 2017 lúc 21:53

thiếu đề!!

Bình luận (0)
NA
Xem chi tiết
NC
6 tháng 4 2017 lúc 23:14

<=> \(x^3-x+y^{3_{ }}-y+z^3-z=2017\)

<=>\(\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z-1\right)z\left(z+1\right)=2017\)(1)

vì \(x-1;x;x+1\)là 3 sô nguyên liên tiếp nên tích của chúng chia hết cho 3=>vế trái (1) chia hết cho 3

Mà 2017 không chia hết cho 3

=>Phương trình đã cho vô nghiệm

Bình luận (0)
NA
Xem chi tiết
IN
24 tháng 2 2020 lúc 23:11

  Ta có: \(x^3+y^3+z^3=x+y+z+2017\left(1\right)\)

\(\implies\) \(\left(x^3-x\right)+\left(y^3-y\right)+\left(z^3-z\right)=2017\)

chứng minh được :                                                    

       \(x^3-x=x.\left(x^2-1\right)=x.\left(x-1\right).\left(x+1\right)\)

       \(y^3-y=y.\left(y^2-1\right)=y.\left(y-1\right).\left(y+1\right)\)

        \(z^3-z=z.\left(z^2-1\right)=z.\left(z-1\right).\left(z+1\right)\)

   Vì x,y,z là các số nguyên nên:

\(x.\left(x-1\right).\left(x+1\right);y.\left(y-1\right).\left(y+1\right);z.\left(z-1\right).\left(z+1\right)\) là tích của ba số nguyên liên tiếp nên chia hết cho 3

   Do đó vế trái của (1) luôn chia hết cho 3 , mà 2017 không chia hết cho 3 

Vậy không có các số nguyên x,y,z thỏa mãn yêu cầu bài toán 

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
TN
Xem chi tiết
NQ
Xem chi tiết
KB
Xem chi tiết