Những câu hỏi liên quan
LC
Xem chi tiết
ND
Xem chi tiết
H24
10 tháng 5 2018 lúc 21:37

Ta có: 
1/50 + 1/99 = 149/50.99 
1/51 +1/98 = 149/51.98 
... 
1/74 +1/75=149/74.75 

=> a/b =149*[1/50.99 +..+1/74.75] 

Quy đồng mẫu số vế phải ta được; 
a/b =149.k /[50.51.....99] 

Tuy nhiên do 149 là số nguyên tố nên 50.51..99 không chia hết cho 149 

=> a= 149p, với p là số đã ước lược với các số dưới mẫu số 

=> a chia hết cho 149

Bình luận (0)
LD
16 tháng 6 2019 lúc 20:29

\(Ta\)\(có:\)

\(\frac{1}{50}\)\(+\)\(\frac{1}{99}\)\(=\frac{149}{50.99}\)

\(\frac{1}{51}+\frac{1}{98}=\frac{149}{51.98}\)

\(...\)

\(\frac{1}{74}+\frac{1}{75}=\frac{149}{74.75}\)

\(\Rightarrow\frac{a}{b}=149\)*\([\frac{1}{50.99}+...+\frac{1}{74.75}]\)

Quy đồng mẫu số vế phải ta được :

\(\frac{a}{b}=149.k/\left[50.51...99\right]\)

Tuy nhiên do 149 là số nguyên tố nên 50.51...99 ko chia hết cho 149

\(\Rightarrow a=149p,với\)\(p\)là số đã ước lược với các số dưới mẫu số

\(\Rightarrow a\)chia hết cho \(149\)

Bình luận (0)
LK
Xem chi tiết
DN
Xem chi tiết
NH
24 tháng 9 2015 lúc 12:21

10 người đầu ak! vậy bạn có tới 10 nick cơ ak!

Bình luận (0)
DT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
NA
8 tháng 10 2018 lúc 20:58

Ta có : \(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

             \(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

              \(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

             \(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

              \(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)

              \(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(B=\frac{2015}{51}+\frac{2015}{52}+...+\frac{2015}{100}\)

    \(=2015\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)

\(\Rightarrow\) \(\frac{B}{A}=\frac{2015\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}=2015\)

\(\Rightarrow\) \(B⋮A\)

Bình luận (0)