Cho 1-50+1/51+1/52+...+1/200=a/b.Chứng minh a chia hết cho 559
Cho 1/50+1/51+1/52+...+1/99 = a/b. CMR: a chia hết cho 149
Tổng \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+.........+\frac{1}{99}\)bằng phân số \(\frac{a}{b}\).Chứng minh a chia hết cho 149
Ta có:
1/50 + 1/99 = 149/50.99
1/51 +1/98 = 149/51.98
...
1/74 +1/75=149/74.75
=> a/b =149*[1/50.99 +..+1/74.75]
Quy đồng mẫu số vế phải ta được;
a/b =149.k /[50.51.....99]
Tuy nhiên do 149 là số nguyên tố nên 50.51..99 không chia hết cho 149
=> a= 149p, với p là số đã ước lược với các số dưới mẫu số
=> a chia hết cho 149
\(Ta\)\(có:\)
\(\frac{1}{50}\)\(+\)\(\frac{1}{99}\)\(=\frac{149}{50.99}\)
\(\frac{1}{51}+\frac{1}{98}=\frac{149}{51.98}\)
\(...\)
\(\frac{1}{74}+\frac{1}{75}=\frac{149}{74.75}\)
\(\Rightarrow\frac{a}{b}=149\)*\([\frac{1}{50.99}+...+\frac{1}{74.75}]\)
Quy đồng mẫu số vế phải ta được :
\(\frac{a}{b}=149.k/\left[50.51...99\right]\)
Tuy nhiên do 149 là số nguyên tố nên 50.51...99 ko chia hết cho 149
\(\Rightarrow a=149p,với\)\(p\)là số đã ước lược với các số dưới mẫu số
\(\Rightarrow a\)chia hết cho \(149\)
Tổng:\(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+........+\frac{1}{99}\) bằng phân số \(\frac{a}{b}\)
Chững minh rằng:a chia hết cho 149
cho
A = 1/50+1/51+1/52 ...............+1/98+1/99
hãy chứng minh A chia hết cho 149
10 người đầu duoc like
10 người đầu ak! vậy bạn có tới 10 nick cơ ak!
Cho M=1/1*200+1/2*201+...+1/50*149 và N=1/1*51+1/2*52+1/3*53+...+1/199*249 Chứng minh 199 *M - 50 *N=0
cho A = 1/1*2+1/3*4+...+1/99*100 và B= 2015/51+2015/52+2015/53+...+2015/100. Chứng minh rằng B chia hết cho A
Cho A=50 +51 +52 +...+52010 +52011
a) Chứng tỏ rằng 4A+1 là 1 lũy thừa cơ số 5. b)Tìm xN biết 4A+1=5x
c) Chứng minh A 6
d) Tìm số dư khi chia A cho 31
Cho A=1/3+1/4+1/5+.. ...+1/10 = a/b.Chứng minh rằng a chia hết cho 13
cho A = 1/1*2+1/3*4+...+1/99*100 và B= 2015/51+2015/52+2015/53+...+2015/100. Chứng minh rằng B chia hết cho A
Ta có : \(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(B=\frac{2015}{51}+\frac{2015}{52}+...+\frac{2015}{100}\)
\(=2015\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)
\(\Rightarrow\) \(\frac{B}{A}=\frac{2015\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}=2015\)
\(\Rightarrow\) \(B⋮A\)