Cho H=22010-22009-22008-2-1 Tính 2010H
cho H = 2^2010 - 2^2009 - 2^2008 - .... - 2 - 1
Tính 2010^H
Cho H= 22010-22009-22008-....-2-1.
tính 2010H
cho H=2^2010-2^2009-2^2008...-2-1.tinh 2010^H
Cho H = 22010 - 22009 - 22008 - ... - 2 -1. Tính 2010H.
H=22010-22009-22008-..-2-1
=>2H=22011-22010-22009-...-22-2
=>2H-H=22011-22010-22009-..-22-22010+22009+22008+..+2+1
=>H=22011-22011+1=1
=>2010H=20101=2010
Tính 2010H biết:
H=22010-22009-22008-...-2-1
Ta có:
2H=22011-22010-22009-...-22-2
-
H=22010-22009-22008-...-2-1
----------------------------------------------------
=>2H-H=H=22011-22010-22010-1=22011-(22010+22010)-1=22011-22010.2-1=22011-22011-1=0-1=-1
=>2010H=2010-1=1/2010
Chúc bạn học giỏi nha!!!
K cho mik vs nhé Không Cần Biết
Cho H=\(2^{2010-}2^{2009}-2^{2008-}...-2-1\)
Tính \(2010^H\)
Theo qui luật; H = 1.
=> 2010H = 20101 = 2010.
H=22010 - (22009 + 22008 +...+2+1)
Đặt A=(22009 + 22008 +...+2+1)
2A=22010 +22009 +...+22 +2
-A= 22009 +...+22 +2+1
A=22010-1(mình trừ theo hàng dọc)
nên H=22010 - (22010-1)=1
Vậy 2010H =20101 =2010
Cho H=\(2^{2010}-2^{2009}-2^{2008}-...-2-1\) .Tính \(2010^H\)
Ta có: \(H=2^{2010}-2^{2009}-2^{2008}-...-2-1\)
\(=2^{2010}-\left(2^{2009}+2^{2008}+...+2+1\right)\)
Đặt \(A=2^{2009}+2^{2008}+...+2+1\)
\(\Rightarrow2A=2^{20010}+2^{2009}+...+2^2+2\)
\(\Rightarrow2A-A=\left(2^{20010}+2^{2009}+...+2^2+2\right)-\left(2^{2009}+2^{2008}+...+2+1\right)\)\(\Rightarrow A=\left(2^{2010}-1\right)+\left(2^{2009}-2^{2009}\right)+\left(2^{2008}-2^{2008}\right)+...+\left(2-2\right)\)\(\Rightarrow A=2001-1\)
\(\Rightarrow H=2^{2010}-\left(2^{2010}-1\right)\)
\(\Rightarrow H=2^{2010}-2^{2010}+1=1\)
Thay \(H=1\) vào biểu thức \(2010^H\)
\(\Rightarrow2010^H=2010^1=1\)
Vậy \(2010^H=1\)
tính 2010*2010-2009*2009+2008*2008-........+2*2-1*1
Cho \(H=2^{2010}-2^{2009}-2^{2008}-...-2-1. Tính2010^H\)
Ta có: \(H=2^{2010}-2^{2009}-2^{2008}-...-2-1\)
\(=2^{2010}-\left(2^{2009}+2^{2008}+...+2+1\right)\)
Đặt \(A=2^{2009}+2^{2008}+...+2+1\)
\(\Rightarrow2A=2^{20010}+2^{2009}+...+2^2+2\)
\(\Rightarrow2A-A=\left(2^{20010}+2^{2009}+...+2^2+2\right)-\left(2^{2009}+2^{2008}+...+2+1\right)\)\(\Rightarrow A=\left(2^{2010}-1\right)+\left(2^{2009}-2^{2009}\right)+\left(2^{2008}-2^{2008}\right)+...+\left(2-2\right)\)\(\Rightarrow A=2001-1\)
\(\Rightarrow H=2^{2010}-\left(2^{2010}-1\right)\)
\(\Rightarrow H=2^{2010}-2^{2010}+1=1\)
Thay \(H=1\) vào biểu thức \(2010^H\)
\(\Rightarrow2010^H=2010^1=1\)
Vậy \(2010^H=1\)