CMR với mọi x thuộc Z thì \(x^4+6x^3+11x^2+6x\) chia hết cho 24
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
bn ... ơi...mik ...bỏ...cuộc ...hu...hu
. Huhu T^T mong sẽ có ai đó giúp mình "((
CMR: B = x3 + 6x2 - 19x - 24 chia hết cho 6 với mọi x thuộc N
\(\forall x\in N\) ta có
\(B=x^3+6x^2-19x-24=\left(x-3\right)\left(x+1\right)\left(x+8\right)\)
- Nếu x chẵn thì \(\left(x+8\right)⋮2\Rightarrow B⋮2\)
- Nếu x lẻ thì \(\left(x-3\right)⋮2\Rightarrow B⋮2\)
Vậy \(B⋮2\)
Lại có \(x-3\equiv x\left(mod3\right)\) và \(x+8\equiv x+2\left(mod3\right)\)
\(\Rightarrow B=\left(x-3\right)\left(x+1\right)\left(x+8\right)\equiv x\left(x+1\right)\left(x+2\right)\) (mod3)
Mặt khác x, x+1, x+2 là 3 số tự nhiên liên tiếp nên ắt tồn tại 1 số chia hết cho 3 \(\Rightarrow\left[x\left(x+1\right)\left(x+2\right)\right]⋮3\)
Hay \(B⋮3\)
Ta có \(B⋮2\), \(B⋮3\) mà 2 và 3 là 2 số nguyên tố cùng nhau nên \(B⋮6\)
CMR với mọi x nguyên thì \(x^4+6x^3+11x^2+6x+1\) là số cp
Ta có: x4 + 6x3 + 11x2 + 6x + 1
= x(x3 + 6x2 + 11x + 6) + 1
= x(x3 + 3x2 + 3x2 + 9x + 2x + 6) + 1
= x[x2(x + 3) + 3x(x + 3) + 2(x + 3)] + 1
= x(x + 3)(x2 + 3x + 2) + 1
= (x2 + 3x)(x2 + 3x + 2) + 1
=> (x2 + 3x + 1 - 1)(x2 + 3x + 1 + 1) + 1
= (x2 + 3x + 1)2 - 1 + 1
= (x2 + 3x + 1)2
=> x4 + 6x3 + 11x2 + 6x + 1 là số chính phương
Giả sử pt có nghiệm thì nghiệm đó k phải là 0. Vì vậy ta có:
\(x^4+6x^3+11x^2+6x+1=x^2\left(x^2+6x+11+\frac{6}{x}+\frac{1}{x^2}\right)\)
\(=x^2\left[\left(x^2+\frac{1}{x^2}\right)+6\left(x+\frac{1}{x}\right)+11\right]\)
\(=x^2\left[\left(x+\frac{1}{x}\right)^2-2+6\left(x+\frac{1}{x}\right)+11\right]\)
\(=x^2\left[\left(x+\frac{1}{x}\right)^2+6\left(x+\frac{1}{x}\right)+9\right]\)
\(=x^2\left(x+\frac{1}{x}+3\right)^2=\left(x^2+3x+1\right)^2\) là scp
Cho x,y thuộc Z. CMR nếu 6x+11y chia hết cho 31 thì x+ 7y cũng chia hết cho 31. Ngược lại x+7y chia hết cho 31 thì 6x+ 11y cũng chia hết cho 31
6x+11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên x+7y buộc phải chia hết cho 31 (ĐPCM)
6x+11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên x+7y buộc phải chia hết cho 31 (ĐPCM)
6x+11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên x+7y buộc phải chia hết cho 31 (ĐPCM)
Cho x;y thuộc z
CMR nếu 6x+11y chia hết cho 31 thi x+7y cùng chia hết cho 31. Ngược lại nếu x+7y chia hết cho 31 thì 6x+11y cũng chia hết cho 31
CMR: Với mọi giá trị nguyên của x thì x^4+6x^3+11x^2+6x+1 luôn có giá trị là số chính phương
GIẢI GẤP GIÚP MÌNH NHA!!!
Chứng minh rằng nếu 6x + 11y chia hết cho 31 với mọi x, y thuộc z thì x + 7y cũng chia hết cho 31.
giúp mình 3 câu ấy nhé!
Ta có 6x+11y chia hết cho 31
<=>6x+(11y+31y) chia hết cho 31( 31y chia hết cho 31)
<=>6x+42y chia hết cho 31
<=>6.(x+7y) chia hết cho 31
Ta có (6;31)=1
=> x+7y chia hết cho 31(đpcm)
Chứng minh rằng :
a) f(x)=x^3+1964x chia hết cho 24 với mọi x chẵn
b)g(x)=x^4-4x^3-4x^2+16x chia hết cho 24 với moi x chẵn
c)h(x)=x^4+6x^2-7 chia hết cho 32 với mọi x lẻ
CMR(6x+11y) chia hết cho 31 khi và chỉ khi x+7y chia hết cho 41. Với mọi x, y thuộc N