1+3+5+....+(2n-1)=225
tìm n thuộc N*
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm n thuộc Z
2n + 5 thuộc B( n + 1)
2n + 3 thuộc B( n + 1 )
Câu 1 :
\(2n+5\)thuộc bội của \(n+1\)\(\Rightarrow\)\(\left(n+1\right)\inƯ\left(2n+5\right)\)
Ta có :
\(2n+5=2n+2+3=2.\left(n+1\right)+3\)chia hết cho \(n+1\)\(\Rightarrow\)\(\left(n+1\right)\inƯ\left(3\right)\)
\(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
Do đó :
\(n+1=1\Rightarrow n=1-1=0\)
\(n+1=-1\Rightarrow n=-1-1=-2\)
\(n+1=3\Rightarrow n=3-1=2\)
\(n+1=-3\Rightarrow n=-3-1=-4\)
Vậy \(n\in\left\{0;-2;2;-4\right\}\)
Bài 2 :
\(2n+3\)thuộc bội của \(n+1\)\(\Rightarrow\)\(\left(n+1\right)\inƯ\left(2n+3\right)\)
Ta có :
\(2n+3=2n+2+1=2.\left(n+1\right)+1\)chia hết cho \(n+1\)\(\Rightarrow\)\(\left(n+1\right)\inƯ\left(1\right)\)
\(Ư\left(1\right)=\left\{1;-1\right\}\)
Do đó :
\(n+1=1\Rightarrow n=1-1=0\)
\(n+1=-1\Rightarrow n=-1-1=-2\)
Vậy \(n\in\left\{0;-2\right\}\)
Chúc bạn học tốt
tính nhanh: a, -25.21.(-2)^2.(-|-3|).(-1)^2n+1(n thuộc N*)
b, (-5)^3.67.(-|-2^3|).(-1)^2n(n thuộc N*)
a) -25.21.(-2)2.(-/-3/).(-1)2n+!
= -25.21.4.(-3).( -1 )
= ( -25.4 ).( -3.21 ).( -1 )
= -100.( -63 ).( -1 )
= -6300
b) ( -5 )3.67.(-/-23/).( -1 )2n
= -15.67.8.1
= -8040
Mk ko chắc ! ~HỌC TỐT~
Chứng minh rằng:
a, n(2n-3) - 2n(n+1) chia hết cho 5 với mọi n thuộc Z
b, (n-1)(3-2n) - n(n+5) chia hết cho 3 với mọi n thuộc N
a) \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)\(⋮\)\(5\)
b) \(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\)
\(=3n-2n^2-3+2n-n^2-5n\)
\(=-3n^2-3\)
\(=-3\left(n^2+1\right)\)\(⋮\)\(3\)
CM:
a) (2n+3)2-9 chia hết cho 4 với n thuộc Z
b) n2(n+1)+2n(n+1) chia hết cho 6 với n thuộc Z.
c) n(2n-3)-2n(n+1) chia hết cho 5 với n thuộc Z.
c) \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)Vì n nguyên
\(\Rightarrow-5n⋮5\left(đpcm\right)\)
a) \(\left(2n+3\right)^2-9\)
\(=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)\)
\(=4n\left(n+3\right)\)
Do \(n\in Z\Rightarrow n+3\in Z\)
\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)
b) \(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Vì \(n\in Z\Rightarrow\left\{{}\begin{matrix}x+1\in Z\\n+2\in Z\end{matrix}\right.\)
Mà n,n+1,n+2 là 3 sô nguyên liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+3\right)⋮6\left(dpcm\right)\)
2. a) Tìm n thuộc N để n^5+1 chia hết cho n^3+1
b) Tìm n thuộc Z để n^5+1 chia hết cho n^3+1
3. Tìm số nguyên n sao cho:
a) n^2+2n-4 chia hết cho 11
b) 2n^3+n^2+7n+1chia hết cho 2n-1
c) n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
d) n^3-n^2+2n+7 chia hết cho n^2+1
2.a)n^5+1⋮n^3+1
⇒n^2.(n^3+1)-n^2+1⋮n^3+1
⇒1⋮n^3+1
⇒n^3+1ϵƯ(1)={1}
ta có :n^3+1=1
n^3=0
n=0
Vậy n=0
b)n^5+1⋮n^3+1
Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0
Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!
2. a) Tìm n thuộc N để n^5+1 chia hết cho n^3+1
b) Tìm n thuộc Z để n^5+1 chia hết cho n^3+1
3. Tìm số nguyên n sao cho:
a) n^2+2n-4 chia hết cho 11
b) 2n^3+n^2+7n+1chia hết cho 2n-1
c) n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
d) n^3-n^2+2n+7 chia hết cho n^2+1
(-25).21.(-2)2 .(-3). (-1)2n+ 1(n thuộc N*)
(-5)3.67.(-8).(-1)2n(n thuộc N*)
tìm n
tìm ƯCLN {n+3, 2n+5} voi n thuộc N
Số 4 có thuộc{n+1 ,2n+5} ko
Bài 1:
gọi a là ƯCLN của n+3 và 2n+5
=> a là ƯC của 2.(n+3)=2n+6 và 2n+5
=>a là Ư của (2n+6)-(2n+5)=2n+6-2n+5=1
=> a=1
vậy ƯCLN(n+3,2n+5)=1
Bài 2:
gọi a là ƯC của n+1 và 2n+5
=> 2n+5 chia hết cho a
n+1 chia hết cho a
=>(2n+5)-(n+1) chia hết cho a
=>3 chia hết cho a
=>3 chia hết cho 4 (vô lí)
vậy 4 không là ƯC của n+1 và 2n+5
tìm n thuộc Z
2n + 5 thuộc B( n + 1 )
2n + 3 thuộc B( n + 1 )
1 tìm n thuộc z biết
a, 7 chia hết n-2
2 tìm n thuộc z biết
a, 2n+5 chia hết cho n-1
b, n+3 chia hết cho 2n -1
3 tìm n thuộc z biết
a, 2n-5 chia hết cho n+1 và n+1 chia hết cho 2n+5
b, 3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2