cmr\(\frac{n-5}{3n-14}\)là phân số tối giản với mọi n thuộc Z
chứng minh rằng phân sau là phân số tối giản với mọi n thuộc Z:
\(\frac{n-5}{3n-14}\)
Gọi ƯCLN(n-5;3n-14) là d, Ta có :
n-5 =3n-15 chia hết cho d ; 3n-14 chia hết cho d
=>(n-5)-(3n-14)=1 chia hết cho d
=>d=1 hoặc -1 =>n-5 và 3n-14 là psố tối giản
k cho min nha !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Gọi d là ƯC(n - 5 ; 3n - 14)
\(\Rightarrow\hept{\begin{cases}n-5⋮d\\3n-14⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n-5\right)⋮d\\3n-14⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3n-15⋮d\\3n-14⋮d\end{cases}}}\)
=> ( 3n - 15 ) - ( 3n - 14 ) chia hết cho d
=> 3n - 15 - 3n + 14 chia hết cho d
=> ( 3n - 3n ) + ( 14 - 15 ) chia hết cho d
=> 0 + ( -1 ) chia hết cho d
=> -1 chia hết cho d
=> d = 1 hoặc d = -1
=> ƯCLN(n - 5 ; 3n -14) = 1
=> \(\frac{n-5}{3n-14}\)tối giản ( đpcm )
Đề bài : CMR \(\frac{n-5}{3n-14}\) là phân số tối giản với mọi số nguyên n
Gọi ƯCLN(n-5;3n-14) = d
\(\Rightarrow\begin{cases}n-5⋮d\\3n-14⋮d\end{cases}\)
\(\Rightarrow\begin{cases}3\left(n-5\right)⋮d\\3n-14⋮d\end{cases}\)
\(\Rightarrow\begin{cases}3n-15⋮d\\3n-14⋮d\end{cases}\)
=> ( 3n - 14 ) - ( 3n - 15 ) \(⋮\) d
=> 1 \(⋮\) d
=> d = 1
Vậy \(\frac{n-5}{3n-14}\) là phân số tối giản
Chứng minh rằng \(\frac{n-5}{3n-14}\)là phân số tối giản với mọi n thuộc tập hợp số nguyên
C/m rang ; \(\frac{n-5}{3n-1}\) là phân số tối giản với mọi n thuộc Z
chứng tỏ phân số 2n + 5 / 3n + 7 là phân số tối giản với mọi ( n thuộc Z)
Gọi ƯCLN(2n + 5,3n + 7) = d (d \(\inℤ;d\ne0\))
=> Ta có :\(\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\)
=> \(1⋮d\Rightarrow d=1\)
CMR với mọi n\(\in\)N*, các phân số sau là các phân số tối giản
a)\(\frac{2n+5}{3n+7}\)
b)\(\frac{6n-14}{2n-5}\)
Gọi \(ƯCLN\left(2n+5;3n+7\right)\) là \(d\)
\(\Rightarrow\)\(\left(2n+5\right)⋮d\) và \(\left(3n+7\right)⋮d\)
\(\Rightarrow\)\(3\left(2n+5\right)⋮d\) và \(2\left(3n+7\right)⋮d\)
\(\Rightarrow\)\(\left(6n+15\right)⋮d\) và \(\left(6n+14\right)⋮d\)
\(\Rightarrow\)\(\left(6n+15\right)-\left(6n+14\right)⋮d\)
\(\Rightarrow\)\(\left(6n-6n+15-14\right)⋮d\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow\)\(d\inƯ\left(1\right)\)
Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(ƯCLN\left(2n+5;3n+7\right)=\left\{1;-1\right\}\)
Vậy \(\frac{2n+5}{3n+7}\) là phân số tối giản
a Gọi ước chung của 2n+5 và 3n+7 là n
2n+5 ⋮ x=>6n+15⋮x
3n+7 ⋮ x =>6n+14 ⋮x
=>1 chia hết x=> x thuộc ước của 1
Vậy phân số đó tối giản
b 6n-14 chia hết x
2n-5 chia hết x=>6n-15 chia hết x
=>1 chia hết x=> x thuộc ước của 1
Vậy phân số đó tối giản
a)
Gọi ước chung lớn nhất của 2n+5 và 3n+7 là d
=> 2n+5 chia hết cho d và 3n+7 chia hết
=> 3n+7 - 2n-5 chia hết cho d => n+2 chia hết cho d
=> 2n+5 - 2*(n+2) chia hết cho d => 1 chia hết cho d
=> d=1
=> 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
=> 2n+5/3n+7 là phân số tối giản ( ĐPCM)
b)
Gọi ước chung lớn nhất của 6n-14 và 2n-5 là d
=> 2n-5 chia hết cho d và 6n-14 chia hết
=> 6n-14 - 3*(2n-5) chia hết cho d
=> 6n-14-6n+15
=> 1 chia hết cho d
=> d=1
=> 6n-14 và 2n-5 là 2 số nguyên tố cùng nhau
=> 6n-14/2n-5 là phân số tối giản ( ĐPCM)
Tích cho mk nhoa !!!! ~~
CMR phân số : 5n+3/3n+2 là phân số tối giản với n thuộc Z
Gọi d = (5n + 3 ; 3n + 2) (d thuộc N)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(5n + 3 ; 3n + 2) = 1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N
ai tích cho mk với
c) gọi d là ưcln của 3n+2 và 5n+3, ta có
(3n+2)-(5n+3) chia hết cho d
5(3n+2)-3(5n+3) chia hết cho d
15n+10-15n-9 chia hết cho d
15n-15n+10-9 chia hết cho d
1 chia hết cho d => d=1
Vậy 5n+3/3n+2 là phân số tối giản
CMR với mọi n thuộc N thì phân số sau là phân số tối giản
a)\(\frac{5n+2}{3n+1}\)
b)\(\frac{2n+5}{3n+7}\)
c)\(\frac{12n+1}{30n+2}\)
mk biết làm bài này đấy nhưng hơi dài
Hướng dẫn: Đặt (tử, mẫu)=d
Phương pháp: Tìm được d = 1.
Cách làm: Nhân tử với a, nhân mẫu với b (a, b là số nguyên) sao cho khi trừ đi 2 kết quả mới triệt tiêu được 2 biểu thức chứa n.
Cuối cùng sẽ tìm được 1 là bội của b => d=1
Còn lại cậu tự làm nhé!
Chứng tỏ phân số 2n+1/3n+2 là phân số tối giản với mọi n thuộc Z
Gọi d là ƯCLN của 2n + 1 và 3 n + 2
Ta có
2n+1 chia hết cho d => 3 ( 2n+1) chia hết cho d => 6n +3 chia hết cho d (1)
3n + 1 chia hết cho d => 2(3n+1) chia hết cho d => 6n + 4 Chia hết cho d ( 2 )
Từ (1), (2)
=> 6n+4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN ( 2n + 1 : 3n + 2 ) = 1
=> Phân số 2n+1/3n+2 tối giản với mọi n thuộc Z
Phương pháp chứng minh 1 p/s tối giản là :
Chứng minh ƯCLN của tử và mẫu = 1
Còn cách làm : Tự làm
Gọi d= ƯCLN (2n+1, 3n+2)(d thuộc N*)
\(\Rightarrow\)2n+1\(⋮\)d
3n+2\(⋮\)d
\(\Rightarrow\)(2n+1).3\(⋮\)d
(3n+2).2\(⋮\)d
\(\Rightarrow\)6n+3\(⋮\)d
6n+4\(⋮\)d
\(\Rightarrow\)(6n+4)-(6n+3)\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d=1
\(\Rightarrow\)2n+1/3n+2 là phân số tối giản.
\(\Rightarrow\)Đpcm.