Những câu hỏi liên quan
NA
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
NT
Xem chi tiết
DH
19 tháng 8 2017 lúc 15:25

\(A=16^n-15n-1=\left(16^n-1^n\right)-15n\)

Áp dụng hằng đẳng thức phụ :

\(a^k-b^k=\left(a-b\right)\left(a^{k-1}+a^{k-2}b+a^{k-3}b^2+.....+ab^{k-2}+b^{k-1}\right)\)

ta có : \(16^n-1^n=\left(16-1\right)\left(16^{n-1}+16^{n-2}+.....+16^2+16+1\right)\)

\(=15\left(16^{n-1}+16^{n-2}+.....+16^2+16+1\right)⋮15\)

Do đó \(16^n-1^n⋮15\)

Mà \(15n⋮15\) nên \(A=\left(16^n-1^n\right)-15n⋮15\)(đpcm)

Bình luận (0)
NP
Xem chi tiết
PH
3 tháng 1 2017 lúc 21:32

Gọi d là ƯCLN(15n+1,3n+1)

Hay 15n+1 chia hết cho d, 3n+1 chia hết cho d

Hay (15n+1-3n+1) chia hết cho d

Hay 12 chia hết cho d

Hay d thuộc ước của 12

Ư(12)={1;2;3;4;6;12}

Mà khi d=1 thì phân số trên sẽ không cùng chia hết cho một số bất kì nào nữa có nghĩa là khi đó d mới là phân số tối giản.

Mà d ở phân số trên có nhiều hơn 1 ước nên phân số trên không là phân số tối giản.

Ví dụ: nếu d=5 thì 15.5+1/3.5+1=76/16=19/4 chưa là phân số tối giản.

Kết luận:đề bài sai.

tk mình nha, mình rõ nhất

Bình luận (0)
TT
Xem chi tiết
QN
Xem chi tiết
SN
Xem chi tiết
PD
10 tháng 1 2019 lúc 22:55

Thử n = 1 \(\Rightarrow4+15-10=9⋮9\).Vậy mệnh đề đúng với n = 1

Giả sử n = K đúng với mọi n thuộc N

\(\Rightarrow4^K+15K-10⋮9\)

Giờ ta cần chứng minh mệnh đề cũng đúng với n = K + 1

Thật vậy ta có :\(\Rightarrow4^{K+1}+15\left(K+1\right)-10\)

\(=4^K.4+15K+5\)

\(=4^K.4+4.15K-4.10+45\)

\(=4\left(4^K+15K-10\right)+5.9\)

Do \(4^K+15K-10⋮9\left(B2\right)\)

\(45⋮9\)

\(\Rightarrow\)Mệnh đề cũng đúng với n = K + 1

Vậy đpcm.

PP quy nạp toán học lớp 11

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 7 2019 lúc 16:45

4n + 15n – 1 chia hết cho 9

Đặt An = 4n + 15n – 1

với n = 1 ⇒ A1 = 4 + 15 – 1 = 18 chia hết 9

+ giả sử đúng với n = k ≥ 1 nghĩa là:

Ak = (4k + 15k – 1) chia hết 9 (giả thiết quy nạp)

Ta cần chứng minh: Ak + 1 chia hết 9

Thật vậy, ta có:

Ak + 1 = 4k+1 + 15(k + 1) – 1

         = 4.4k + 15k + 15 – 1

         = 4.(4k + 15k – 1) – 45k+ 4+ 15 – 1

         = 4.(4k +15k- 1) – 45k + 18

         = 4. Ak + (- 45k + 18)

Ta có: Ak⋮ 9 và ( - 45k+ 18) = 9(- 5k + 2)⋮ 9

Nên Ak + 1 ⋮ 9

Vậy 4n + 15n – 1 chia hết cho 9 ∀n ∈ N*

Bình luận (0)