Chung minh rang 1+3+3^2+3^3+...+3^11chia het cho 52
chung to rang A=3^1+3^2+3^3 +...+3^2010 chia het cho 52
giup voi
chung minh rang 11^n+2+12^2n+1 chia het cho 133
chung minh rang A=(17^n+1)(17^n+2)chia het cho 3 voi moi n thuoc N
cho (2a+7b) chia het cho 3 ( a b thuoc N). chung to (4a+2b) chia het cho 3
chung minh rang 4+4^3+4^5+4^7+...+4^23 chia het cho 68
chung minh rang 1+3+3^2+3^3+...+3^2000 chia het cho 13
giup mink voi thu 6 mink nop roi
4 + 4^3 + 4^5 + 4^7 + ... + 4^23
= ( 4 + 4^3 ) + ( 4^5 + 4^7 ) +.....+ ( 4^22 + 4^23)
=4( 1+16 ) + 4^5( 1+16 ) +....+ 4^22( 1+ 16 )
=4 x 17 + 4^5 x 17+....+ 4^22 x 17 chia hết cho 68
Câu 2:
1+3+3^2+3^3+....+3^2000
=( 1+3 +3^2 ) + ( 3^3 + 3^4 + 3^5 ) +.....+ ( 3^ 1998 + 3^1999 + 3^2000)
=1( 1+ 3 + 9 ) + 3^3 + ( 1+ 3 + 9 ) +......+ 3^1998+( 1+ 3 + 9 )
= 1 x 13+ 3^3 x 13 +......+ 3^1998 x 13 chia hết cho 13
k mk nha lần sau mk k lại
Câu 1 nha : 4+4^3+4^5+4^7+....+4^23 = (4+4^3)+(4^5+4^7)+....+(4^21+4^23)
= 68 + 4^4.(4+4^3)+....+4^20.(4+4^3) = 68 + 4^4.68 + .... + 4^20.68
=68.(1+4^4+....+4^20) chia hết cho 68
Câu 2 nha 1+3+3^2+...+3^2000 = (1+3+3^2)+(3^3+3^4+3^5)+....+(3^1998+3^1999+3^2000)
= 13 + 3^3.(1+3+3^2)+....+3^1998.(1+3+3^2) = 13+3^3.13+....+3^1998.13
=13.(1+3^3+....+3^1998) chia hết cho 13
1) Cho s= 3+3^2+....+3^1998. Chung minh rang S chia het cho 39
2)Chung minh rang 36^36 - 9^10 chia het cho 45
3)Hoi khi nao thi tong cua n so tu nhien lien tiep bat ki chia het cho n.
CAC BAN GIUP MINH DI MAI MINH NOP OI HUHU
chung minh rang: 1+3+3^2+3^3+...+3^2011 chia het cho 10
Ta có
1+3+32+33+...+32011
= (1+3+32+33)+....+(32008+32009+32010+32011)
=40+40+...+40
=10(4+4+...+4)\(⋮\)10 (đpcm)
đặt A= 1+3+32 +........+32011
=> 3A=3+32 +33+.......+32011+32012
=> 3A-A=32012-1
=>A=(32012-1)/2
Đặt \(A=1+3+3^2+3^3+.......+3^{2011}\)
\(\Rightarrow A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+........+\left(3^{2008}+3^{2009}+3^{2010}+3^{2011}\right)\)
\(\Rightarrow A=10+3^4.\left(1+3+3^2+3^3\right)+.......+3^{2008}.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=10+3^4.10+.........+3^{2008}.10\)
\(\Rightarrow A=10\left(1+3^4+......+3^{2008}\right)⋮10\)( đpcm )
Vậy .....
Toan 6: chung minh rang: (1+3+3^2+3^3+...+3^35) chia het cho 520?
1.chung minh rang
A=2+2^2+2^3+...+2^30 chia het cho 7
2.chung minh rang neu p la so nguyen to lon hon 3 thi p^2-1chia het cho 24
giai nhanh ho minh nhe!
A=2+22+23+24+....+230
=(2+22+23)+(24+25+26)+...+(228+229+230)
=1(2+22+23)+23(2+22+23)+...+227(2+22+23)
=1.7+23.7+25.7+...+227.7
=7(1+23+25+...+227)
vì 7:7-->A:7
\(A=2+2^2+2^3+2^4+...+2^{29}+2^{30}\)
\(=\left(2^{ }+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{28}+2^{29}+2^{30}\right)\)
\(=2.\left(1+2+2^2\right)+2^{^{ }4}.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{28}.7\)
\(=7.\left(2+2^4+...+2^{28}\right)\)
\(\Rightarrow A⋮7\)
chung minh rang 2^1+2^2+2^3+..........+2^2016 chia het cho 3
Goi S = 2 + 22 + 23 + 24 + ......+ 22016
<=> S = ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 22015 + 22016 )
<=> S = 2.( 1 + 2 ) + 23.( 1 + 2 ) + ....... + 22015.( 1 + 2 )
<=> S = 2.3 + 23.3 + ...... + 22015.3
<=> S = 3.( 2 + 23 + .... + 22015 )
Vì 3 chia hết cho 3 => S chia hết cho 3
de lam ! ai tinh duoc to se tick cho nguoi do
nhấn vào đúng 0 sẽ ra bài làm
cho C = 1 +3 + 32 + 33 + .... + 311 chung minh rang
a, chứng minh rằng C chia hết cho 13
b, chung minh rang C CHIA HET CHO 40