Tìm tất cả các giá trị nguyên của x thoả mãn :
(-1) + 3 + (-5) + 7 +...+ x = 2002
a. Tìm tất cả các số nguyên x thỏa mãn -5<x<5
b. Tìm tất cả các giá trị nguyên của x thỏa mãn:
(-1) + 3 + (-5) + 7 + ... + x = 2002
Answer:
a. \(-5< x< 5\)
\(\Rightarrow x\in\left\{\pm4;\pm3;\pm2;\pm1;0\right\}\)
Tổng các số nguyên x thoả mãn:
\((-4) + (-3) + (-2) + (-1) + 0 + 1 + 2 + 3 + 4\)
\(= (4 - 4) + (3 - 3) + (2 - 2) + (1 - 1) + 0\)
\(=0\)
Tìm tất cả các giá trị nguyên của x thỏa mãn :
a) (x + 2 ) là bội của (x mũ 2 - 7)
b) (-1) + 3 + (-5) + 7 + ... + x = 2002
a, x + 2 chia hết cho x^2 - 7
=> (x + 2)(x - 2) chia hết cho x^2 - 7
=> x^2 - 4 chia hết cho x^2 - 7
=> x^2 - 7 + 3 chia hết cho x^2 - 7
=> 3 chia hết cho x^2 - 7
=> x^2 - 7 thuộc Ư(3)
=> x^2 - 7 thuộc {-1; 1; -3; 3}
=> x^2 thuộc {6; 8; 4; 10}
mà x là số nguyên
=> x = 2 hoặc x = -2
Tìm tất cả các giá trị nguyên của x thoả mãn:
( x + 2 ) là bội của ( x2 - 7 )
a)Tìm tất cả các cặp số nguyên x, y thỏa mãn:x(2y+3)=y+1
b) Tìm tất cả các số nguyên của x thỏa mãn:(-1)+3(-5)+7 ...+ x = 2002
a) => 2xy +3x=y+1
=> 2xy+3x-y=1
=> x(2y+3) - 1/2 (2y+3) +3/2 =1
=> (x-1/2)(2y+3)=1-3/2= -1/2
=> (2x-1)(2y+3)=-1
ta có bảng
...........
1. Tìm tất cả các số nguyên x, y thỏa mãn : x(2y+3)=y+1.
2. Tìm tất cả các số nguyên X thỏa mãn
a) (x+2) là bội của (×^2-7)
b) (-1)+3+(-5)+7+...+x=2002.
Giải giúp mình đi . Giải cụ thể nhé.
Tìm tổng của tất cả các số nguyên thoả mãn:
a.-4<x<3
b.-5<x<5
c.-1<_x<_4
d. giá trị tuyệt đối của x<_4
(-1) + 3 + (-5) + 7 = ... + x = 2002
tìm tất cả các số nguyên thỏa mãn
( -1) + 3 + (-5) + 7 +..+ x = 2002
<=> 2 + 2 + ... + 2 = 2002
<=> 1 + 1 + ... + 1 = 1001
Số số hạng 2 là:
( x - 3 ) / 4 + 1
Ta có:
(x-3) / 4 + 1 = 1001
<=> ( x - 3 ) / 4 = 1000
<=> x - 3 = 4000
<=> x = 4003
1) tìm tất cả giá trị nguyên của x để giá trị của biểu thức \(\frac{x}{x-6}-\frac{6}{x-9}\) lớn hơn 1
2) Cho số n thoả mãn bất phương trình 2(n+2)2 + n(1-n) lớn hơn hoặc bằng (>=) (n-5)(n+5). xác định tất cả các số n không âm để 7-3n là một số nguyên
Đây là đề tuyển sinh 8 lên 9.. mong mọi người giúp đỡ ạ...
Baif1:
Vì biểu thức trên cần lớn hơn 1,nên ta có bất phương trình :
\(\frac{x}{x-6}-\frac{6}{x-9}>1\)
\(\Leftrightarrow\frac{x^2-15x+36}{\left(x-6\right)\left(x-9\right)}\ge\frac{x^2-15x+54}{\left(x-6\right)\left(x-9\right)}\)
\(\Leftrightarrow\frac{x^2-15x+36-\left(x^2-15x+54\right)}{\left(x-6\right)\left(x-9\right)}>0\)
\(\Leftrightarrow\frac{-18}{\left(x-6\right)\left(x-9\right)}>0\)
Vì \(-18< 0\Rightarrow\left(x-6\right)\left(x-9\right)< 0\)
Xét hai trường hợp:
TH1:\(\orbr{\begin{cases}x-6>0\\x-9< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>6\\x< 9\end{cases}}}\)
\(\Leftrightarrow6< x< 9\)(tm)(1)
TH2:\(\orbr{\begin{cases}x-6< 0\\x-9>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 6\\x>9\end{cases}\Leftrightarrow}9< x< 6\left(ktm\right)}\)(2)
Từ (1) và (2) \(\Rightarrow6< x< 9\) lại có \(x\in Z\Rightarrow x\in\left\{7;8\right\}\)
Bài 2:
Ta có:\(2\left(n+2\right)^2+n\left(1-n\right)\ge\left(n-5\right)\left(n+5\right)\)
\(\Leftrightarrow2n^2+8n+8+n-n^2\ge n^2-25\)
\(\Leftrightarrow2n^2-n^2-n^2+8n+n\ge-25-8\)
\(\Leftrightarrow9n\ge-33\)
\(\Leftrightarrow n\ge\frac{-33}{9}\)(1)
Để n không âm thỏa mãn 7-3n là số nguyên,thì \(3n\in Z\Rightarrow n\inℤ+\)(2)
Từ (1) và (2) \(\Rightarrow n\in\left\{0;1;2;............\right\}\)
Đề bài 2 có sai không vậy chứ nó có nhiều sỗ quá bạn ạ