Rút gọn (3n+2)(n-1)-(n+2)(3n-1)
rút gọn biểu thức:
a)1/(2.5)+1/(5.8)+1/(8.11)+...+1/[(3n+2)(3n+5)]
b)1/(1.2.3)+1/(2.3.4)+1/(3.4.5)+...+1/[(n-1)n(n+1)]
Thanksnha.
1. Chứng minh rằng n-5/3n-14 là phân số tối giản với mọi số nguyên n.
2. Tìm số nguyên n để phân số 2n-1/3n+2 rút gọn được
Gọi ước chung lớn nhất của n - 5 và 3n - 14 là d, ta có
3 ( n - 5) - ( 3n - 14)= -1 chia hết cho d
=> d = -1 hoặc 1, do đó n - 5 và 3n - 14 là nguyên tố cùng nhau
vậy n - 5/3n - 14 là phân số tối giản
Tìm n nguyên để 2n-1/3n+2 rút gọn được
Gọi d là ước của 2n-1 và 3n+2 (d thuộc Z)
=> 2n-1 chia hết cho d, 3n+2 chia hết cho d
=> 3(2n-1) chia hết cho d, 2(3n+2) chia hết cho d
=> 6n-3 chia hết cho d, 6n+4 chia hết cho d
=> (6n+4)-(6n-3)=7 chia hết cho d
=> d thuộc {1;3}
Mà nếu d=1 thì 2n-1/3n+2 ko thể rút gọn được
=> d = 7
=> 3n+2 chia hết cho 7
=> 3n+2-14 chia hết cho 7
=> 3n-12 chia hết cho 7
=> 3(n-4) chia hết cho 7
Vì (3;4) = 1 => n-4 chia hết cho 7
=> n-4 có dạng 7k (k thuộc Z)
=> n-4=7k
=> n=7k-4
Vậy n có dạng 7k-4 để 2n-1/3n+2 rút gọn được
tìm n thuộc Z để phân số 2n-1/3n+2 rút gọn được
Ta có:
2n-1 chia hết cho 3n+2
=>3n+2-n-3 chia hết cho 3n+2
=>n-3 chia hết cho 3n+2
=>3n+2-5-2n chia hết cho 3n+2
=> 5+2n chia hết cho 3n+2
=>5+2n-(2n-1) chia hết cho 3n+2
=>6 chia hết cho 3n+2
=> 3n+2 E Ư ( 6) = {-1 ; 1; 2; -2; 3; -3; 6; -6 }
Lập bảng xét từng TH là ra
tìm số nguyên n để phân số 2n-1/3n+2 rút gọn được
Gọi ƯCLN(2n-1; 3n+2) là d. Ta có:
2n-1 chia hết cho d => 6n-3 chia hết cho d
3n+2 chia hết cho d => 6n+4 chia hết cho d => 6n-3+7
=> 6n-3+7-(6n-3) chia hết cho d
=> 7 chia hết cho d
Giả sử phân số rút gọn được
=> 2n-1 chia hết cho 7
=> 2n-1+7 chia hết cho 7
=> 2n+6 chia hết cho 7
=> 2(n+3) chia hết cho 7
=> n+3 chia hết cho 7
=> n = 7k - 3
Vậy để phân số trên tối giản thì n ≠ 7k - 3
Gọi d là ước nguyên tố của 2n-1 và 3n+2
Ta có 2n-1 : d( mình dùng dấu chia thay cho chia hết)
3n+2 :d
=>3(2n-1) :d
2(3n+2) :d
=> 6n-3 :d
6n+4 :d
=>6n+4-(6n-3)=6n+4-6n+3=7 :d
d là nguyên tố nên d=7
Ta có 3n+2 :7
=>3n+2-14 :7
=> 3n-12 :7
3(n-4) :7
Mà (3;7)=1 => n-4 :7
n-4=7k
n=7k+4
Vậy để phân số trên rút gọn được thì n=7k+4
Gọi ƯCLN(2n-1; 3n+2) là d. Ta có:
2n-1 chia hết cho d => 6n-3 chia hết cho d
3n+2 chia hết cho d => 6n+4 chia hết cho d => 6n-3+7
=> 6n-3+7-(6n-3) chia hết cho d
=> 7 chia hết cho d
Giả sử phân số rút gọn được
=> 2n-1 chia hết cho 7
=> 2n-1+7 chia hết cho 7
=> 2n+6 chia hết cho 7
=> 2(n+3) chia hết cho 7
=> n+3 chia hết cho 7
=> n = 7k - 3
Vậy để phân số trên tối giản thì n ≠ 7k - 3
tìm n thuộc Z để phân số 2n-1/3n+2 rút gọn được
Bài 1: tìm số nguyên n để (2n-1)/(3n+2)rút gọn được.
Tìm n thuộc Z để phân số 2n-1/3n+2 rút gọn được.
Lời giải:
Gọi $d=ƯCLN(2n-1, 3n+2)$
$\Rightarrow 2n-1\vdots d; 3n+2\vdots d$
$\Rightarrow 2(3n+2)-3(2n-1)\vdots d$
$\Rightarrow 7\vdots d$
Để phân số đã cho rút gọn được thì $d>1$
Mà $7\vdots d\Rightarrow d=7$
Để điều này xảy ra thì $2n-1\vdots 7$
$\Rightarrow 2n-1-7\vdots 7$
$\Rightarrow 2n-8\vdots 7$
$\Rightarrow 2(n-4)\vdots 7$
$\Rightarrow n-4\vdots 7\Rightarrow n=7k+4$ với $k$ nguyên.
Vậy $n$ có dạng $7k+4$ với $k$ nguyên
Tìm các số N thuộc Z để phân số 2n-1/3n+2 rút gọn được.