tìm xy thuộc Z biết
xy-2x+5y=12
Bài 4;Tìm x,y thuộc Z,biết
a,xy-3y-8x=24
b,xy-2x+5y=12
Tìm x, y thuộc Z, biết xy+2x-5y=15
Tìm x Thuộc Z, biết
a) xy - 2x - 3y = 5
b) xy - 2x - 5y = 2
Tìm x Thuộc Z, biết
a) xy - 2x - 3y = 5
b) xy - 2x + 5y = 2
Tìm cặp x,y thuộc Z, biết:
a, xy- 2x+ 5y = 12 c,xy = x-y
b, xy= x+y d,3 mũ x +1 = (y+1)mũ 2
a,
xy - 2x + 5y = 12
=> x(y-2) + 5y - 10 = 2
=> x(y-2) + 5(y-2) = 2
=> (x+5)(y-2) = 2
x+5 | 1 | 2 | -1 | -2 |
y-2 | 2 | 1 | -2 | -1 |
x | -4 | -3 | -6 | -7 |
y | 4 | 3 | 0 | 1 |
Vậy (x,y) = (-4,4); (-3,3); (-6,0); (-7,1)
b,
xy = x + y
=> xy - x - y = 0
=> x(y-1) - (y-1)= 1
=> (x-1)(y-1)= 1
x-1 | 1 | -1 |
y-1 | 1 | -1 |
x | 2 | 0 |
y | 2 | 0 |
Vậy (x,y) = (2,2); (0,0)
c,
xy = x-y
=> xy - x + y = 0
=> x(y-1) + (y-1) = -1
=> (x+1)(y-1)= -1
x+1 | 1 | -1 |
y-2 | -1 | 1 |
x | 0 | -2 |
y | 1 | 3 |
=> (x,y) = ...
d,
3x+1 = (y+1)2
Ta có:
(y+1)2 chia 3 dư 0,1
Mà 3x+1 chia hết cho 3 với x khác -1
+ Với x = -1
<=> 30 = (y+1)2
<=> (y+1)2 = 1
=> \(\left[{}\begin{matrix}y+1=1\\y+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=-2\end{matrix}\right.\)
Ta được hai cặp (x,y) = (-1;0); (-1;-2)
+ Với x khác -1
=> (y+1)2 chia hết cho 3
=> y+1 chia hết cho 3
=> y chia 3 dư 2
Vậy với x khác -1 thì giá trị ương ứng của y sẽ bằng 3k+2
Vậy...............
ìm x, y thuộc Z biết:
a) xy - 2x + 3y = 0
b) xy -x - 5y = -8
c) 2x - xy - y = 11
a, x[y-2]+3y-6=0-6
x[y-2]+3[y-2]=-6
[x+3][y-2]=-6
-6=-1.6=-6.1
tiếp theo tự làm nha
b, x[y-1]-5y-5=-8-5
x[y-1]-5[y-1]=-13
[x-5][y-1]=-13
-13=-1.13=-13.1
tiếp theo tự làm nha
NHỚ THEO DÕI MÌNH NHA
TÌM X,Y THUỘC Z BIẾT
xy+x-2y=3
3x+5y+175
3xy+6x+y_32=0
2x+5y+3xy=8
4xy-3(x+y)=59
xy-x-y=2
tìm x,y thuộc Z
xy-5y-2x=-41
xy-5y-2x=-41
=>y(x-5)-2x+10=-31
=>y(x-5)-2(x-5)=-31
=>(y-2)(x-5)=-31(1)
NX: -31=-31.1=1.-31=-1.31=31.-1
Từ (1) ta có bảng sau :
x-5 | -31 | 1 | -1 | 31 |
y-2 | 1 | -31 | 31 | -1 |
x | -26 | 6 | 4 | 36 |
y | 3 | -29 | 33 | 1 |
=>(x;y)thuộc{(-26;3);(6;-29);(4;33);(36;1)}
KL: Vậy .................................................
tìm cặp số nguyên (xy) biết xy-2x+5y-12=0
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)