Cmr a , a^n+4 có chữ số tận cùng giống nhau với n lớn hơn hoặc bằng 1
Bài 1: cmr với mọi số tự nhiên a và n:
a. 7n và 7n+4 có hai chữ số tận cùng như nhau
b. a và a5 có chữ số tận cùng như nhau
c. an và an+4 có chữ số tận cùng như nhau (n lớn hơn hoặc bằng 1)
(theo tính chất chia hết đối với số nguyên)
Cho a=1+2+3+4+...+n và b=2.n+1 với n thuộc N,n lớn hơn hoặc bằng 2
CMR:2 số a,b nguyên tố cùng nhau
2 mũ 4 mũ n+1 có chữ số tận cùng bằng 7 ( n thuộc N, n lớn hơn hoặc = 1
CMR:
M = 3n+2-2n+2+3n-2n có tận cùng là o với mọi số tự nhiên n lớn hơn hoặc bằng 1
với n > 1,ta có:
M=3n+2-2n+2+3n-2n
=3n+2+3n-(2n+2+2n)
=3n.(32+1)-2n(22+1)
=3n.10-2n.5=3n.10-2n-1.10
=10.(3n-2n-1) chia hết cho 10 hay M tận cùng là 0(đpcm)
Cho số tự nhiên n. Chứng minh rằng:
a, Nếu n tận cùng bằng chữ số chẵn thì n và 6n có chữ số tận cùng như nhau
b, Nếu b tận cùng bằng chữ số lẻ khác 5 thì n^4 tận cùng bằng 1. Nếu n tận cùng bằng chữ số chẵn khác 0 thì n^4 tận cùng bằng 6
c, Số N^5 và n có chữ số tận cùng như nhau
a, Xét : 6n-n = 5n
Vì n chẵn nên 5n có tận cùng là 0
=> n và 6n có chữ số tận cùng giống nhau
c, Xét : n^5-n = n.(n^4-1) = n.(n^2-1).(n^2+1) = (n-1).n.(n+1).(n^2-4+5) = (n-2).(n-1).n.(n+1).(n+2) + 5.(n-1).n.(n+1)
Ta thấy : n-2;n-1;n;n+1;n+2 là 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 10 ( vì 2 và 5 là 2 số nguyên tố cùng nhau )
Lại có : (n-1).n.(n+1) chia hết cho 2 nên 5.(n-1).n.(n+1) chia hết cho 10
=> n^5-n chia hết cho 10
=> n^5-n có tận cùng là 0
=> n^5 và n có chữ số tận cùng như nhau
Tk mk nha
Cho số tự nhiên n. Chứng minh rằng :
a) Nếu n tận cùng bằng chữ số chẵn thì n và 6n có chữ số tận cùng như nhau.
b) Nếu n tận cùng bằng chữ số lẻ khác 5 thì n4 tận cùng bằng 1. Nếu n tận cùng bằng chữ số chẵn khác 0 thì n4 tận cùng bằng 6.
c) Số n5 và n có chữ số tận cùng như nhau.
a) Cách 1. Xét từng trường hợp n tận cùng bằng 0, 2, 4, 6, 8 thì 6n tận cùng cũng như vậy.
Cách 2. Xét hiệu 6n−n=5n chia hết cho 10 vì n chẵn.b) Nếu n tận cùng bằng 1 hoặc 9 thì n2 tận cùng bằng 1, do đó n4 tận cùng bằng 1. Nếu n tận cùng bằng 3 hoặc 7 thì n2 tận cùng bằng 9, do đó n4 tận cùng bằng 1. Nếu n tận cùng bằng 4 hoặc 6 thì n2 tận cùng bằng 6, do đó n4 tận cùng bằng 6. Nếu n tận cùng bằng 2 hoặc 8 thì n2 tận cùng bằng 4, da) n là số chẵn
\(\Rightarrow\) n = 2k
\(\Rightarrow\) 6n = 12k
Vì 12 có tận cùng như 2 nên 12k có tận cùng như 2k.
\(\Rightarrow\) n và 6n có tận cùng như nhau
\(\Rightarrow\) ĐPCM
Cho m và n là 2 số nguyên, cmr: m^4-n^4 có chữ số tận cùng giống nhau
a) Chứng minh rằng 7^n+4 và 7^n có 2 chữ số tạn cùng giống nhau .
b) Chứng minh rằng a^5 và a có chữ số tận cùng giống nhau.
Cho số tự nhiên n. Chứng minh rằng:
a) Nếu n tận cùng bằng chữ số chẵn thì n và 6n có chữ số tận cùng như nhau
b) Nếu n tận cùng bằng chữ số lẻ khác 5 thì n4 tận cùng bằng 1. Nếu n tận cùng bằng chữ số chẵn khác 0 thì 4n tận cùng bằng 6
c) Số n5 và n có chữ số tận cùng như nhau