Những câu hỏi liên quan
NA
Xem chi tiết
MV
7 tháng 1 2018 lúc 18:15

\(\dfrac{x}{2017}=\dfrac{y}{2018}=\dfrac{z}{2019}=k\\ \Rightarrow\left\{{}\begin{matrix}x=2017k\\y=2018k\\z=2019k\end{matrix}\right.\)

\(4\left(x-y\right)\left(y-z\right)=4\left(2017k-2018k\right)\left(2018k-2019k\right)=4\left(-k\right)\left(-k\right)=4k^2=\left(2k\right)^2=\left(2019k-2017k\right)^2=\left(z-x\right)^2\left(ĐPCM\right)\)

Bình luận (0)
PV
Xem chi tiết
NV
Xem chi tiết
NV
13 tháng 2 2020 lúc 19:51

Tìm giá trị nhỏ nhất của biểu thức A = /x+1/ + /x-2017/ với x là số nguyên

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
PA
Xem chi tiết
DH
Xem chi tiết
KM
4 tháng 1 2018 lúc 14:21

xin loi , may tinh minh hong unikey

Dat \(\frac{x}{2017}=\frac{y}{2018}=\frac{z}{2019}=k\)

Suy ra \(x=2017k;y=2018k;z=2019k\)

Khi đó 4.(x-y).(y-z) = \(4.\left(2017k-2018k\right).\left(2018k-2019k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)

\(\left(z-x\right)^2=\left(2019k-2017k\right)^2=\left(2k\right)^2=4k^2\)

Nen \(4.\left(x-y\right).\left(y-z\right)=\left(z-x\right)^2\)

Bình luận (0)
NH
Xem chi tiết
H24
1 tháng 8 2018 lúc 15:20

TÔI CHƯA GIẢI ĐƯỢC

Bình luận (0)
NC
Xem chi tiết
TQ
Xem chi tiết
NQ
19 tháng 12 2017 lúc 21:00

x^3+y^3+z^3-3xyz = 0

<=> (x+y+z).(x^2+y^2+z^2-xy-yz-zx) = 0

Mà x+y+z > 0 => x^2+y^2+z^2-xy-yz-zx = 0

<=> 2x^2+2y^2+2z^2-2xy-2yz-2zx = 0

<=> (x-y)^2+(y-z)^2+(z-x)^2 = 0

=> x-y=0;y-z=0;z-x=0

=> P = 0

k mk nha

Bình luận (0)