Những câu hỏi liên quan
H24
Xem chi tiết
TL
28 tháng 2 2020 lúc 19:31

\(A=3+3^2+3^3+...+3^{100}\)

\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)

\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)

\(\Leftrightarrow2A=3^{101}-3\)

\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)

\(\Leftrightarrow A< B\)

Bình luận (0)
 Khách vãng lai đã xóa
NV
28 tháng 2 2020 lúc 19:31

a. tính A = 3+3^2+3^3+3^4+.....+3^100

3A=3^2+3^3+3^4+3^5+....+3^100

3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100

mà B=3^100-1 => A<B

Bình luận (0)
 Khách vãng lai đã xóa
TL
28 tháng 2 2020 lúc 19:34

\(A=1+4+4^2+...+4^{99}\)

\(\Leftrightarrow4A=4+4^2+4^3+...+4^{100}\)

\(\Leftrightarrow3A=4^{100}-1\)

\(\Leftrightarrow A=\frac{4^{100}-1}{3}< \frac{4^{100}}{3}\)

hay A<B (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
AH
25 tháng 10 2024 lúc 22:54

Lời giải:

$A=1+4+4^2+4^3+...+4^{99}$

$4A=4+4^2+4^3+4^4+....+4^{100}$

$\Rightarrow 4A-A=4^{100}-1$

$\Rightarrow 3A=4^{100}-1=B-1< B$
$\Rightarrow A< \frac{B}{3}$

Bình luận (0)
TH
Xem chi tiết
NH
Xem chi tiết
NL
15 tháng 7 2020 lúc 21:47

Bài làm:

Ta có: \(A=1+4+4^2+4^3+...+4^{99}\)

\(\Rightarrow4A=4+4^2+4^3+4^4+...+4^{100}\)

\(\Rightarrow4A-A=\left(4+4^2+...+4^{100}\right)-\left(1+4+...+4^{99}\right)\)

\(\Leftrightarrow3A=4^{100}-1\)

\(\Rightarrow A=\frac{4^{100}-1}{3}=\frac{4^{100}}{3}-\frac{1}{3}< \frac{4^{100}}{3}=\frac{B}{3}\)

\(\Leftrightarrow A< \frac{B}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
15 tháng 7 2020 lúc 22:02

A = 1 + 4 + 42 + 43 + ... + 499

4A = 4( 1 + 4 + 42 + 43 + ... + 499 )

     = 4 + 42 + 43 + 44 + ... + 4100

4A - A = 3A

           = ( 4 + 42 + 43 + 44 + ... + 4100 ) - ( 1 + 4 + 42 + 43 + ... + 499 )

           =  4 + 42 + 43 + 44 + ... + 4100 - 1 - 4 - 42 - 43 - ... - 499

           = 4100 - 1 

3A = 4100 - 1 => A = \(\frac{4^{100}-1}{3}\)

\(\frac{B}{3}=\frac{4^{100}}{3}\)

\(4^{100}-1< 4^{100}\Rightarrow\frac{4^{100}-1}{3}< \frac{4^{100}}{3}\)

\(\Rightarrow A< \frac{B}{3}\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
AP
16 tháng 7 2020 lúc 7:00

\(4A=4+4^2+...+4^{100}\) 

\(\Rightarrow4A-A=3A=4^{100}-1\)

\(\Rightarrow A=\frac{4^{100}-1}{3}< \frac{4^{100}}{3}\Rightarrow A< \frac{B}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
NK
Xem chi tiết
DT
Xem chi tiết
TQ
Xem chi tiết
TM
5 tháng 4 2017 lúc 16:24

\(A=1+4+4^2+...+4^{99}\)

=>\(4A=4+4^2+4^3+...+4^{100}\)

=>\(4A-A=\left(4+4^2+4^3+...+4^{100}\right)-\left(1+4+4^2+...+4^{98}\right)\)

=>\(3A=4^{100}-1\)

=>\(A=\frac{4^{100}-1}{3}< \frac{4^{100}}{3}=\frac{B}{3}\)

Ta có đpcm

Bình luận (0)
BH
5 tháng 4 2017 lúc 16:26

4A=4+42+43+44+...+499+4100

=> 4A-A=4+42+43+44+...+499+4100-(1+4+42+43+44+...+499)=4100-1

=> 3A=4100-1 => A=\(\frac{4^{100}-1}{3}=\frac{4^{100}}{3}-\frac{1}{3}=\frac{B}{3}-\frac{1}{3}\)

=> A < B/3

Bình luận (0)
DT
Xem chi tiết
IM
20 tháng 2 2016 lúc 19:56

A=1+4+42+43+.......+499                                                                                                                                                                                     4A=4+42+43+44+.....+4100                                                                                                                                                                                 4A-A=4+42+43+44+.....+4100 -1-4-42-43-.......-499                                                                                                                                                                                            3A=4100-1 => A=(4100-1)/3                                                                                                                                                                                 Vì 4100>4100-1 nên (4100-1)/3 < 4100/3 HAY A<B/3(ĐPCM)                                                                                                                             

Bình luận (0)
H24
Xem chi tiết
TP
13 tháng 8 2018 lúc 15:49

\(4A=4+4^2+...+4^{100}\)

\(4A-A=\left(4+4^2+...+4^{100}\right)-\left(1+4+...+4^{99}\right)\)

\(3A=4^{100}-1\)

\(A=\frac{4^{100}-1}{3}< \frac{4^{100}}{3}=B\left(đpcm\right)\)

Bình luận (0)
H24
13 tháng 8 2018 lúc 16:00

A = 1 + 4 + 4^2 + 4^3 + ....+ 4^99 

4A = 4 + 4^2 + 4^3 + ..... + 4^100 

4A - A = ( 4 + 4^2 + 4^3 + ..... + 4^100 ) - ( 1 + 4 + 4^2 + 4^3 + .... + 4^99 )

3A = 4^100 - 1 

A = 4^100 - 1 /3 < 4^100/3 

Vậy A < B/3

Bình luận (0)
NT
14 tháng 8 2018 lúc 13:21

dễ ẹc!!!!!!!!

Bình luận (0)