Tìm x biết \(x=\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)(với a:b:c khác 0)
1 . Tìm a , b, c biết a:b:c=2:5:7 và a-b+c=16
2 . 17,5 + /-2,5/ - (-11,3)
3. \(2^x+1=9\)
4. Cho a, b ,c , d khác 0 ; \(a=\frac{b+c}{2}\)
và \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{d}\right)\)
Chứng minh 4 số lập nên 1 tỉ lệ thức.
cái dấu ở chỗ -2,5 là dấu trị tuyệt đối hả bn
3) 2X+1=9
\(\Rightarrow\)2X =9-1
2X =8=23
NÊN X=3
2) 17,5 + \(\left|-2,5\right|\) - (-11,3)
= 17,5 + 2,5 + 11,3
= 20 +11,3
= 31,3
a) Tìm các số x và y biết rằng \(\left(x-\frac{1}{2}\right)^{2016}+\left|\frac{3}{4}-y\right|=0\)
b) Cho 3 số a,b,c khác nhau và khác 0. Biết \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Tính giá trị của biểu thức \(P=\frac{b+c}{a}-\frac{a+c}{b}-\frac{a+b}{c}\)
a)\(\left(x-\frac{1}{2}\right)^{2016},\left|\frac{3}{4}-y\right|\ge0\)
\(\left(x-\frac{1}{2}\right)^{2016}+\left|\frac{3}{4}-y\right|=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-\frac{1}{2}\right)^{2016}=0\\\left|\frac{3}{4}-y\right|=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=0\\\frac{3}{4}-y=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}\end{cases}}\)
b)\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\)
\(\Rightarrow\frac{b+c}{a}-\frac{a+c}{b}-\frac{a+b}{c}=0\)
Cho a(y+z) = b(z+x) = c(x+y) với a khác b khác c và a, b, c khác 0. CMR \(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
a, Cho :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) và a,b,c khác 0 và a+b+c khác 0 . So sánh a, b, c .
b, Cho : \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)và x,y,z khác 0 ; x + y + z khác 0 . Tính \(\frac{x^{333}.y^{666}}{z^{999}}\)
c, Cho : ac = b2 ; ab = c2 ( a+b+c khác 0 ) . Tính \(\frac{b^{333}}{c^{111}.a^{222}}\)
a, Áp dụng TCDTSBN ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> a = b = c
b, Áp dung TCDTSBN ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
=> x = y = z
Vậy \(\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)
c, ac = b2 => \(\frac{a}{b}=\frac{b}{c}\left(1\right)\)
ab = c2 => \(\frac{b}{c}=\frac{c}{a}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng TCDTSBN ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> a = b = c
Vậy \(\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)
a, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
Vậy a = b ; a = c ; c = a => a=b=c
b, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
=> x = y; y = z; z = x => x = y = z
\(\Rightarrow\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{333+666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)
c,
Theo đề bài:
ac = bb <=> bb/a = c
ab = cc <=> ab/c = c
=> bb/a = ab/c
=> bbc = aab
=> bc = ab
Mà cc = ab => cc = bc => b = c
ac/b = b
cc/a = b
=> ac/b = cc/a
=> aac = bcc
=> aa = bc
Mà bc = cc => aa = cc => a = c
=> a = b = c
\(\Rightarrow\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)
Bài 1: Cho \(a+b+c+d\) khác 0 và \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)
Tính giá trị biểu thức: \(A=\frac{a+c}{b+d}+\frac{a+b}{c+d}+\frac{a+c}{b+d}+\frac{b+c}{a+d}\)
Bài 2: Tìm số tự nhiên có 3 chữ số abc biết a:b:c=1:2:3 và abc chia hết cho 18.
Bài 3: Tìm 3 số dương a;b;c biết: ab=c ; bc=4a ; ac=9b
a) Tìm 3 số x, y, z biết rằng 2x-y=20 và \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\).
b) Cho a,b,c là các số nguyên khác 0 và \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\). Chứng minh a=b=c.
a)Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}=\frac{2x-y}{6-4}=\frac{20}{2}=10\)
Từ \(\frac{x}{3}=10=>x=30\)
Từ \(\frac{y}{4}=10=>y=40\)
Từ \(\frac{z}{5}=10=>z=50\)
Vậy x=30,y=40,z=50
b)Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(=>\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}=>\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}=>a=b=c}}\)
Đpcm
a)Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}\)= \(\frac{y}{4}\)= \(\frac{z}{5}\)=\(\frac{2x-y}{\left(3\cdot2\right)-5}\)=\(\frac{20}{1}\)=20
-> \(\frac{x}{3}\)= 20 ->x=20*3=60
\(\frac{y}{4}\)=20->y=20*4=80
\(\frac{z}{5}\)=20->z=20*5=100
Vậy x=60, y=80, z=100.
a) Ta có : \(\frac{x}{3}=\frac{2x}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{2x-y}{6-4}=\frac{20}{2}=10\)
\(\Rightarrow\hept{\begin{cases}2x=10\cdot6=60\Rightarrow x=30\\y=10\cdot4=40\\z=10\cdot5=50\end{cases}}\)
Vậy....
=))
Biết \(\frac{bx-cy}{a}=\frac{cx-az}{b}=\frac{ay-bz}{c}\)(với mọi a;b;c khác 0).Chứng minh:\(\frac{x}{a}=\frac{y}{b}=\frac{c}{z}\)
GIÚP MÌNH VỚI
Biết \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\) với a,b,c khác 0
CMR: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
\(\Rightarrow\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\)
\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}\)
Do a,b,c khác 0, áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}=\frac{0}{a^2+b^2+c^2}=0\)
\(\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}\Rightarrow\hept{\begin{cases}\frac{y}{b}=\frac{z}{c}\\\frac{x}{a}=\frac{z}{c}\\\frac{x}{a}=\frac{y}{b}\end{cases}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}}}\)
Biết \(\frac{b.z-c.y}{a}=\frac{c.x-a.z}{b}=\frac{a.y-b.x}{c}\)(với a,b,c khác 0)
Chứng minh rằng \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
\(=\frac{bzx-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bzx}{cz}=\frac{bzx-cxy+cxy-ayz+ayz-bzx}{ax+by+cz}=0\)
=>bz-cy=0;cx-az=0;ay-bx=0
\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(đpcm\right)\)