cho đa thức A=(x+2)(x+4)(x+6)(x+8)+16
CMR vs mọi sô tự nhiên x thì A luôn là 1 số chính phương
Chứng minh rằng với mọi số tự nhiên x thì giá trị biểu thức sau luôn viết được bằng tổng của hai số chính phương:
A=x^2+2(x+1)^2+3(x+2)^2+4(x+3)^2
Ta có
\(A=x^2+2\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2\)
\(=x^2+2x^2+4x+2+3x^2+12x+12+4x^2+24x+36\)
\(=10x^2+40x+50\)
\(=x^2+10x+25+9x^2+30x+25\)
\(=\left(x+5\right)^2+\left(3x+5\right)^2\) (đpcm)
Cho đa thức f(x) = x4 + 6x3 +11x2 + 6x
a. Phân tích đa thức thành nhân tử
b. Chứng minh với mọi x nguyên thì f(x) + 1 luôn có giá trị là 1 số chính phương
f(x) = x4 + 6x3 +11x2 + 6x
\(=x^4+x^3+5x^3+5x^2+6x^2+6x\)
\(=\left(x^4+x^3\right)+\left(5x^3+5x^2\right)+\left(6x^2+6x\right)\)
\(=x^3\left(x+1\right)+5x^2\left(x+1\right)+6x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+5x^2+6x\right)\)
\(=x\left(x+1\right)\left(x^2+5x+6\right)\)
\(=x\left(x+1\right)\left[x^2+2x+3x+6\right]\)
\(=x\left(x+1\right)\left[\left(x^2+2x\right)+\left(3x+6\right)\right]\)
\(=x\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b)Ta có
\(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]+1\)
\(=\left(x^2+3x\right).\left(x^2 +3x+2\right)+1\)
\(=\left(x^2+3x+1-1\right).\left(x^2+3x+1+1\right)+1\)
\(=\left[\left(x^2+3x+1\right)-1\right].\left[\left(x^2+3x+1\right)+1\right]+1\)
\(=\left(x^2+3x+1\right)^2-1+1=\left(x^2+3x+1\right)^2\)
Vậy với mọi x nguyên thì f(x) + 1 luôn có giá trị là 1 số chính phương
Bài 1: Chứng minh rằng với mọi số nguyên x, y thì
A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4 là số chính phương.
Bài 2: Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương
Cho S = 1.2.3 + 2.3.4 + 3.4.5 + . . . + k(k+1)(k+2)
Chứng minh rằng 4S + 1 là số chính phương
Bài 1: Chứng minh rằng mọi số nguyên x, y thì:
A = (x + y)(x + 2y)(x + 3y)(x + 4y) + là số chính phương.
Bài 2: Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương
Bài 3: Cho S = 1.2.3 + 2.3.4 + 3.4.5 + . . . + k(k+1)(k+2)
Chứng minh rằng 4S + 1 là số chính phương .
Bài 1: Chứng minh rằng mọi số nguyên x, y thì:
A = (x + y)(x + 2y)(x + 3y)(x + 4y) + là số chính phương.
Giải: Ta có A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4
= (x2 + 5xy + 4y2)(x2 + 5xy + 6y2) + y4
Đặt x2 + 5xy + 5y2 = t (t ∈ Z) thì
A = (t - y2)(t + y2) + y4 = t2 - y4 + y4 = t2 = (x2 + 5xy + 5y2)2
Vì x, y, z ∈ Z nên x2 ∈ Z, 5xy ∈ Z, 5y2 ∈ Z => (x2 + 5xy + 5y2) ∈ Z
Vậy A là số chính phương.
Bài 2: Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương.
Giải: Gọi 4 số tự nhiên, liên tiếp đó là n, n + 1, n + 2, n + 3 (n ∈ Z). Ta có:
n(n + 1)(n + 2)(n + 3) + 1 = n . ( n + 3)(n + 1)(n + 2) + 1
= (n2 + 3n)(n2 + 3n + 2) + 1 (*)
Đặt n2 + 3n = t (t ∈ N) thì (*) = t(t + 2) + 1 = t2 + 2t + 1 = (t + 1)2
= (n2 + 3n + 1)2
Vì n ∈ N nên n2 + 3n + 1 ∈ N. Vậy n(n + 1)(n + 2)(+ 3) + 1 là số chính phương.
Bài 3: Cho S = 1.2.3 + 2.3.4 + 3.4.5 + . . . + k(k+1)(k+2)
Chứng minh rằng 4S + 1 là số chính phương .
Ta có k(k+1)(k+2) = 1/4 k(k+1)(k+2).4 = 1/4 k(k+1)(k+2).[(k+3) – (k-1)]
= 1/4 k(k+1)(k+2)(k+3) - 1/4 k(k+1)(k+2)(k-1)
→ S = 1/4.1.2.3.4 - 1/4.0.1.2.3 + 1/4.2.3.4.5 - 1/4.1.2.3.4 +...+ 1/4k(k+1)(k+2)(k+3) - 1/4k(k+1)(k+2)(k-1) = 1/4k(k+1)(k+2)(k+3)
4S + 1 = k(k+1)(k+2)(k+3) + 1
Theo kết quả bài 2 → k(k+1)(k+2)(k+3) + 1 là số chính phương.
cmr: vs mọi sô tự nhiên n
\(\left(x+1\right)^{2n}-x^{2n}-2x-1⋮x\left(x+1\right)\left(2x+1\right)\)
cm = cách mọi nghiệm của đa thức chia đều là nghiệm của đa thức bị chia
a) Chứng minh rằng với mọi số nguyên x,y là số nguyên thì giá trị của đa thức:
A= (x+y)(x+2y)(x+3y)(x+4y)+y4 là một số chính phương.
b) Chứng minh rằng n3 +3n2 +2n chia hết cho 6 với mọi số nguyên.
A=(x+y)(x+2y)(x+3y)(x+4y)+y4
A=(x+y)(x+4y).(x+2y)(x+3y)+y4
A=(x2+5xy+4y2)(x2+5xy+6y2)+y4
A=(x2+5xy+ 5y2 - y2 )(x2+5xy+5y2+y2)+y4
A=(x2+5xy+5y2)2-y4+y4
A=(x2+5xy+5y2)2
Do x,y,Z nen x2+5xy+5y2 Z
A là số chính phương
a) Ta có: A= (x+y)(x+2y)(x+3y)(x+4y)+y4
= (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y2
Đặt x2 + 5xy + 5y2 = h ( h thuộc Z):
A = ( h - y2)( h + y2) + y2 = h2 – y2 + y2 = h2 = (x2 + 5xy + 5y2)2
Vì x, y, z thuộc Z nên x2 thuộc Z, 5xy thuộc Z, 5y2 thuộc Z . Suy ra x2 + 5xy + 5y2 thuộc Z
Vậy A là số chính phương.
a) CMR : nếu x là số tự nhiên lẻ thì giá trị biểu thức :
A=x^2+4x-5 là bội số của 8
b) tìm các số tự nhiên x thỏa mãn x^2+65 là số chính phương
\(a\text{)}\)
\(A=x^2+4x-5=\left(x-1\right)\left(x+5\right)\)
\(\text{Nếu }x\text{ là số tự nhiên lẻ thì }x=2n+1\text{ (}n\in N\text{ )}\)
\(\text{Khi đó: }A=\left(2n+1-1\right)\left(2n+1+5\right)=2n.\left(2n+6\right)=4n\left(n+3\right)\)
+ \(n\text{ chẵn thì }n\left(n+3\right)\text{ chẵn }\Rightarrow n\left(n+3\right)\text{chia hết cho 2 }\Rightarrow4n\left(n+3\right)\text{ chia hết cho 8}\)
+ \(n\text{ lẻ thì }n+3\text{ chẵn }\Rightarrow n\left(n+3\right)\text{ chia hết cho 2 }\Rightarrow4n\left(n+3\right)\text{ chia hết cho 8}\)
Ta có đpcm.
\(\text{b)}\)
\(x^2+65=y^2\)\(\Rightarrow y^2-x^2=65\Leftrightarrow\left(y+x\right)\left(y-x\right)=65.1=13.5\)
\(\text{Do }x,y\text{ nguyên nên }y+x;y-x\text{ nguyên}\)
\(\text{Mà }y+x>y-x>0\text{ nên ta có:}\)
\(\text{+TH1: }y+x=65\text{ và }y-x=1\Leftrightarrow x=32;y=33\)
\(\text{+TH2:}y+x=13\text{ và }y-x=5\Leftrightarrow x=4;y=9\)
\(\text{Vậy }x\in\left\{4;32\right\}\text{ thì }x^2+65\text{ là số chính phương.}\)
1/ Tìm nghiệm của đa thức:
a. x2+căn 3
b. x2+2x
c. x2+2x-3
2/ Xác định hệ số m để các đa thức sau nhận 1 làm một nghiệm :
a. mx2+2x+8
b. 7x2+mx-1
c. x5-3x2+m
3/ Cho đa thức: f(x): x2+mx+2
a. Xác định m để f(x) nhận -2 làm một nghiệm.
b. Tìm tập hợp các nghiệm của f(x) ứng với giá trị vừa tìm được của m.
4/ Cho biết: (x-1)f(x)=(x-4)f(x-8) với mọi x
CM: f(x) có ít nhất 2 nghiệm.
5/ Tìm đa thức f(x) rồi tìm nghiệm của f(x) biết rằng:
x3+2x2(4y-1)-4xy2-9y3-f(x)=-53+8 x2y-4xy2-9y3
6/ Cho S=abc+bca+cab
CM: S không phải là số chính phương.
7/ Tìm các số có 3 chữ số sao cho hiệu của số ấy và số gồm 3 chữ số ấy viết theo thứ tự ngươc lại là 1 số chính phương.
8/ Tìm số tự nhiên abc (a>b>c>0) sao cho abc+bca+cab=666
(Mọi người dùng kiến thức lớp 7 để giải nhe.)
1)x2 +2x=0
=>x(x+2)=0
Xét x=0 hoặc x+2=0
x=-2
Vậy x=0 hoặc x=-2
2)x2 +2x-3=0
=x2 -1x+3x-3=0
=x(x-1)+3(x-1)=0
=(x-1)(x-3)=0
Xét x-1=0 hoặc x-3=0
x=1 x=3
Tự KL nha
1/ Tìm nghiệm của đa thức:
a. x2+\({\sqrt{3}}\)
b. x2+2x
c. x2+2x-3
2/ Xác định hệ số m để các đa thức sau nhận 1 làm một nghiệm :
a. mx2+2x+8
b. 7x2+mx-1
c. x5-3x2+m
3/ Cho đa thức: f(x): x2+mx+2
a. Xác định m để f(x) nhận -2 làm một nghiệm.
b. Tìm tập hợp các nghiệm của f(x) ứng với giá trị vừa tìm được của m.
4/ Cho biết: (x-1)f(x)=(x-4)f(x-8) với mọi x
CM: f(x) có ít nhất 2 nghiệm.
5/ Tìm đa thức f(x) rồi tìm nghiệm của f(x) biết rằng:
x3+2x2(4y-1)-4xy2-9y3-f(x)=-53+8 x2y-4xy2-9y3
6/ Cho S=abc+bca+cab
CM: S không phải là số chính phương.
7/ Tìm các số có 3 chữ số sao cho hiệu của số ấy và số gồm 3 chữ số ấy viết theo thứ tự ngươc lại là 1 số chính phương.
8/ Tìm số tự nhiên abc (a>b>c>0) sao cho abc+bca+cab=666
(Mọi người dùng kiến thức lớp 7 để giải nhe.)