CMR trong 3 số tự nhiên bất kì luôn chọn được 2 số có tổng chia hết cho 2
Bài 1 : Cho 7 số tự nhiên bất kì. CMR bao giờ cũng có thể chọn ra 2 số có hiệu chia hết cho 6
Bài 2 : CMR trong 6 số tự nhiên liên tiếp luôn tìm được hiệu 2 số chia hết cho 5
Bài 3 : Cho 3 số lẻ. CMR tồn tại 2 số có tổng và hiệu chia hết cho 8
Bài 1
6 số tự nhiên bất kì khi chia cho 6 thì xảy ra 6 trường hợp về số dư (0;1;2;3;4;5), còn 1 số kia thì cũng có thể xảy ra 1 trong 6 trường hợp
Số này nếu trừ cho 1 trong 6 số kia thì chắc chắn có 1 số thỏa mãn
Bài 2
5 số tự nhiên liên tiêp này chia cho 5 cũng xảy ra 5 th về dư, chứng minh tương tự bài 1. Bạn cố gắng dùng từ hay hơn nha
cho 5 số tự nhiên bất kì . CMR ta luôn chọn được 3 số có tổng chia hết cho 3
Có 5 số, và 3 số dư khi chia cho 3 là 0;1;2
Nếu có 3,4 hay 5 số mà có cùng số dư khi chia cho 3 thì tổng 3 trong số đó chia hết cho 3.
Nếu có ít hơn 3 nghĩa là nhiều nhất 2 số có cùng số dư khi chia cho 3 thì trong 5 số đó cùng tồn tại các số chia 3 dư 0;1;2 nên tổng 3
số có số dư khi chia cho 3 khác nhau sẽ chia hết cho 3.
Do đó trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3.
ọi 5 số bất kì là a1,a2,a3,a4,a5
theo dirichle tồn tại ít nhất 2 số có cùng số dư khi chia cho 3
TH1 : có ít nhất 3 số có cùng số dư khi chia cho 3 thì tổng 3 số đó chia hết cho 3
TH2 :chỉ có 2 số có cùng số dư khi chia cho 3
GS a1≡a2≡r(mod 3);a3≡a4(mod 3)
nếu r=0 thì a1+a3+a5 chia hết cho 3
nếu r=1 thì a3=3k+2 or a3=3k nên a1+a3+a5 chia hết cho 3
tương tự với r=2
Gọi 5 số bất kì là a1,a2,a3,a4,a5
Theo dirichle tồn tại ít nhất 2 số có cùng số dư khi chia cho 3
TH1 : có ít nhất 3 số có cùng số dư khi chia cho 3 thì tổng 3 số đó chia hết cho 3
TH2 :chỉ có 2 số có cùng số dư khi chia cho 3
GS a1 = a2 = r ( mod3 ) ; a3 = a4 ( mod3 )
Nếu r = 0 thì a1 + a3 + a5 chia hết cho 3
Nếu r = 1 thì a3 = 3k + 2 or a3 = 3k nên a1 + a3 + a5 chia hết cho 3
Tương tự với r = 2
Bài 1: CMR từ 102 số tự nhiên bất kì luôn có thể tồn tại 2 số có tổng hoặc hiệu chia hết cho 200.
Bài 2: CMR từ 10 số tự nhiên bất kì (a1, a2, a3, ... , a10) thì luôn tồn tại 4 số có tổng chia hết cho 4.
Bài 3: CMR từ 13 số tự nhiên bất kì luôn tồn tại 4 số có tổng chia hết cho 4.
Cho 7 số tự nhiên bất kì .CMR ta luôn chọn được 4 số có tổng chia hết cho 4
Giả sử chỉ có 3 số có tổng chia hết cho 4 vậy thì gọi 3 số đó là a,b,c ta có : a+b+c chia hết cho 4 cà giả sử a,b,c đều lẻ vậy a+b+c k chia hết cho 4 (vô lý )
vậy ta luôn chọn dc 4 số có tổng chia hết cho 4 trong 7 số bất kỳ ( thao nguyên tắc dirichlet ) (dpcm)
có người giải mất r
chứng minh rằng trong ba số tự nhiên bất kì luôn chọn được 2 số có tổng chia hết cho 2
3 số đó có dạng: a;a+1;a+2
Nếu a = 2k
Thì a + a+2 = 2k + 2k + 2 = 2(2k + 1)
Chia hết cho 2
Nếu a = 2k + 1
Thì a + a + 2 = 2k + 1 + 2k + 1 + 2 = 2(2k+2)
Chia hết cho 2
cho 7 số tự nhiên bất kì CMR ta luôn chọn được 4 số có tổng chia hết cho 4
Cho 7 số tự nhiên bất kì, chứng minh rằng ta luôn chọn được 4 số có tổng chia hết cho 4.
Giả sử chỉ có 3 số có tổng chia hết cho 4 vậy thì gọi 3 số đó là a,b,c ta có
a+b+c chia hết cho 4 và giả sử a,b,c đều lẻ vậy thì a+b+c không chia hết cho 4 vô lí !
Vậy theo nguyên tắc dirichlet ta chỉ chọn được 4 số có tổng chia hết cho 4
Cho 7 số tự nhiên bất kì, chứng minh rằng ta luôn chọn được 4 số có tổng chia hết cho 4.
Giả sử chỉ có 3 số có tổng chia hết cho 4 vậy thì gọi 3 số đó là a,b,c ta có
a+b+c chia hết cho 4 và giả sử a,b,c đều lẻ vậy thì a+b+c không chia hết cho 4 vô lí !
Vậy theo nguyên tắc dirichlet ta chỉ chọn được 4 số có tổng chia hết cho 4
Cho 7 số tự nhiên bất kì, chứng minh rằng ta luôn chọn được 4 số có tổng chia hết cho 4.
Giả sử chỉ có 3 số có tổng chia hết cho 4 vậy thì gọi 3 số đó là a,b,c ta có
a+b+c chia hết cho 4 và giả sử a,b,c đều lẻ vậy thì a+b+c không chia hết cho 4 vô lí !
Vậy theo nguyên tắc dirichlet ta chỉ chọn được 4 số có tổng chia hết cho 4
cho 5 số tự nhiên lẻ bất kì , CMR ta luôn chọn được 4 số có tổng chia hết cho 4
mình quên câu này dễ quá nên các bạn đừng trả lời ! nhéeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees
1 số lẻ bất kì chia 4 dư chỉ có thể là 1 ; 3
Số lẻ có dạng 4k + 1 hoặc 4k +3
+) Nếu có ít nhất 4 số thuộc cùng 1 dạng thì tổng bốn số chia hết cho 4
+) Nếu mỗi dạng có ít nhất 2 số :
Chọn hai số có dạng 4k + 1
Chọn hai số có dạng 4k + 3
Tổng bốn số chia hết cho 4 ( đpcm )
1/ CMR: Trong 12 số tự nhiên bất kì luôn tìm được 2 số có hiệu chia hết cho 11
2/CMR: Trong 52 số tự nhiên luôn chọn được 2 số có tổng hoặc hiệu chia hết cho 100
Lưu ý : Ko copy trong và ngoài olm và phải giải đầy đủ
Nếu đúng bài làm hay mà ko copy cho 3 like
Chứng minh rằng trong ba số tự nhiên bất kì luôn chọn được hai số có tổng chia hết cho 2