Những câu hỏi liên quan
NN
Xem chi tiết
LA
12 tháng 8 2016 lúc 16:29

1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50

= 1 - 1/50

= 49/50

ỦNG HỘ NHA

Bình luận (0)
SG
12 tháng 8 2016 lúc 16:28

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

Bình luận (0)
SL
7 tháng 3 2018 lúc 10:47

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(=\frac{49}{50}\)

Bình luận (0)
EC
Xem chi tiết
DH
2 tháng 8 2017 lúc 10:56

Ta có công thức :

\(\frac{1}{k\left(k+1\right)}=\frac{\left(k+1\right)-k}{k\left(k+1\right)}=\frac{k+1}{k\left(k+1\right)}-\frac{k}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}=\frac{n-1}{n}\)

Bình luận (0)
DP
2 tháng 8 2017 lúc 10:56

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)

\(A=1-\frac{1}{n}=\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}\)

Bình luận (0)
LV
2 tháng 8 2017 lúc 10:57

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...-\frac{1}{n-1}+\frac{1}{n+1}-\frac{1}{n}\)

\(=1-0-0-0-...-0-\frac{1}{n}\)

\(=\frac{n-1}{n}\)

Bình luận (0)
HP
Xem chi tiết
NM
27 tháng 8 2017 lúc 10:40

a) = 1-1/2+1/2-1/3+1/3-1/4

    = 1-1/4=3/4

b)=1-1/2+1/2-1/3+1/3-1/4+...+1/2016-1/2017+1/2017-1/2018

   =1-1/2018=2017/2018

c)=1/2-1/5+1/5-1/8+1/8-1/11+1/2009-1/2012+1/2012-1/2015

   = 1/2-1/2015=2015/4030-2/4030=2013/4030

Bình luận (0)
H24
27 tháng 8 2017 lúc 11:10

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}=1-\frac{1}{4}=\frac{3}{4}\)

b) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017-2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

c) \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2012.2015}\)

\(=3\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{2012.2015}\right)\)

\(\Leftrightarrow\frac{3}{2}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2012}-\frac{1}{2015}\right)\)

\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{2015}\right)\)

\(=\frac{3}{2}.\frac{2013}{4030}\)

\(=\frac{6039}{8060}\)

Bình luận (0)
TT
3 tháng 5 2018 lúc 21:09

]\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

Bình luận (0)
SY
Xem chi tiết
NH
23 tháng 5 2017 lúc 18:07

sorry mình nhầm

ta có:

M=\(\frac{1^2}{1.2}\).\(\frac{2^2}{2.3}\).\(\frac{3^2}{3.4}\).\(\frac{4^2}{4.5}\)

=\(\frac{1.1.2.2.3.3.4.4}{1.2.2.3.3.4.4.5}\)

=\(\frac{1}{5}\)

vậy M=\(\frac{1}{5}\)

Bình luận (0)
DL
23 tháng 5 2017 lúc 17:54

\(M=\frac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\frac{1}{5}\)

Bình luận (0)
NH
23 tháng 5 2017 lúc 18:03

ta có:

\(\frac{1^2}{1.2}\).\(\frac{2^2}{2.3}\).\(\frac{3^2}{3.4}\).

Bình luận (0)
LA
Xem chi tiết
NU
22 tháng 3 2018 lúc 20:30

hình như là 32 chứ k f 33

\(B=\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot\frac{4^2}{4\cdot5}\)

\(B=\frac{\left(1\cdot1\right)\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)}{\left(1\cdot2\right)\left(2\cdot3\right)\left(3\cdot4\right)\left(4\cdot5\right)}\)

\(B=\frac{\left(1\cdot2\cdot3\cdot4\right)\left(1\cdot2\cdot3\cdot4\right)}{\left(1\cdot2\cdot3\cdot4\right)\left(2\cdot3\cdot4\cdot5\right)}\)

\(=\frac{1}{5}\)

Bình luận (0)
HM
22 tháng 3 2018 lúc 20:33

\(B=\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot\frac{4^2}{4\cdot5}\)

\(B=\frac{1^2\cdot2^2\cdot3^2\cdot4^2}{1\cdot2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot5}\)

\(B=\frac{1^2\cdot2^2\cdot3^2\cdot4^2}{1^2\cdot2^2\cdot3^2\cdot4^2\cdot5}=\frac{1}{5}\)

Bình luận (0)
NV
Xem chi tiết
TD
11 tháng 5 2020 lúc 13:52

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(A=1-\frac{1}{6}=\frac{5}{6}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{n}-\frac{1}{n+1}\)

\(B=1-\frac{1}{n+1}=\frac{n}{n+1}\)

Bình luận (0)
 Khách vãng lai đã xóa

ui cí này e chưa học

Bình luận (0)
 Khách vãng lai đã xóa
H24
11 tháng 5 2020 lúc 14:26

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}=1-\frac{1}{6}\)

\(=\frac{5}{6}\)

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
NN
21 tháng 2 2023 lúc 19:55

Trước tiên, chúng ta cần có lý thuyết về biến đổi phân số.

\(\dfrac{b-a}{a\cdot b}=\dfrac{1}{a}-\dfrac{1}{b}\)

Ta có:

\(S=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2017\cdot2018}\)

\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\)

\(S=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+...-\dfrac{1}{2018}\)

\(S=1-\dfrac{1}{2018}\)

\(S=\dfrac{2017}{2018}\)

Bình luận (0)
TV
21 tháng 2 2023 lúc 19:54

=1/1.2+1/2.3+1/3.4+...1/2017.2018

=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2017-1/2018

=1-1/2018

=2018/2018-1/2018

=2017/2018

Bình luận (0)
NH
21 tháng 2 2023 lúc 19:57

S = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\)+ .......+ \(\dfrac{1}{2017.2018}\)

S = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)+.......+ \(\dfrac{1}{2017}\) - \(\dfrac{1}{2018}\)

S = \(\dfrac{1}{1}\) - \(\dfrac{1}{2018}\)

S = \(\dfrac{2017}{2018}\)

 

Bình luận (0)
HP
Xem chi tiết
SL
11 tháng 3 2018 lúc 14:54

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

Bình luận (0)
H24
Xem chi tiết
HN
15 tháng 4 2019 lúc 18:56

gọi biểu thức trên là A                                                                                                                                                                                          A=1/1 -1/2+1/3-1/4+...+1/2017-12018+1/2018-1/2019                                                                                                                                        A=1/1-1/2019                                                                                                                                                                                                       A=2018/2019

Bình luận (0)
H24
15 tháng 4 2019 lúc 18:58

1/1.2+1/2.3+1/3.4+1/4.5+...+1/2017.2018+1/2018.2019

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2018}-\frac{1}{2019}\)

\(=1-\frac{1}{2019}\)

\(=\frac{2019}{2019}-\frac{1}{2019}\)

\(=\frac{2018}{2019}\)

Bình luận (0)
KG
15 tháng 4 2019 lúc 18:59

cái ĐỒ ĐÁNG GHÉT ◥ὦɧ◤ŤŔầŃ VăŃ ĤùŃĞ™ kia t định trả lời sao m dám....

Bình luận (0)