Những câu hỏi liên quan
CS
Xem chi tiết
CS
24 tháng 12 2017 lúc 17:43

Nhanh giúp mk vs ạ

Bình luận (0)
TD
24 tháng 12 2017 lúc 18:41

\(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\frac{1}{c}:\frac{1}{2}=\frac{b}{ab}+\frac{a}{ab}\)

\(\frac{2}{c}=\frac{a+b}{ab}\)

\(\Rightarrow2ab=a.\left(b+c\right)\)

\(ab+ab=ac+cb\)

\(ab-cb=ac-ab\)

\(b.\left(a-c\right)=a.\left(c-b\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)

Bình luận (1)
ND
Xem chi tiết
NB
Xem chi tiết
NB
8 tháng 8 2023 lúc 15:20

Giúp vs mn ơi

Bình luận (0)
NB
8 tháng 8 2023 lúc 15:22

Cái cuối là c(1/a+1/b) nha mn

Bình luận (0)
PP
8 tháng 8 2023 lúc 15:29

um đợi xíu mình lm cho

Bình luận (0)
NA
Xem chi tiết
NC
Xem chi tiết
NT
Xem chi tiết
TD
9 tháng 5 2020 lúc 17:44

https://olm.vn/hoi-dap/detail/81117789731.html

bạn tham khảo

Bình luận (0)
 Khách vãng lai đã xóa
TL
9 tháng 5 2020 lúc 18:19

Ta có a+b+c=0 => \(a+b=-c\Rightarrow\left(a+b\right)^3=-c^3\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=3ab\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ca=0\)

\(a^6+b^6+c^6=\left(a^3\right)^2+\left(b^3\right)^2+\left(c^3\right)^2=\left(a^3+b^3+c^3\right)^2-2\left(a^3b^3+b^3c^3+c^3a^3\right)\)

\(ab+bc+ca=0\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)

Do đó: \(a^6+b^6+c^6=\left(3abc\right)^2-2\cdot3a^2b^2c^2=3a^2b^2c^2\)

Vậy \(\frac{a^6+b^6+c^6}{a^3+b^3+c^3}=\frac{3a^2b^2c^2}{3abc}=abc\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
WR
29 tháng 6 2019 lúc 10:42

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow\frac{ab+bc+ac}{abc}=1\Leftrightarrow ab+bc+ac=abc\)

kết hợp gt: a+b+c=1

\(\Rightarrow abc-ab-ac-bc+a+b+c-1=0\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\left(đpcm\right)\)

Bình luận (0)
LD
Xem chi tiết
NP
Xem chi tiết
XO
7 tháng 7 2021 lúc 13:41

Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

<=> \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

<=> \(\frac{a+b}{ab}=-\frac{a+b}{\left(a+b+c\right)c}\)

<=> \(\left(a+b\right)\left[\frac{1}{ab}+\frac{1}{\left(a+b+c\right).c}\right]=0\)

<=> \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{ab\left(a+b+c\right)c}=0\)

<=> (a + b)(b + c)(c + a) = 0

<=> a = -b hoặc b = -c hoặc c = -a

Với a = -b => \(\frac{1}{a^7}+\frac{1}{b^7}+\frac{1}{c^7}=\frac{1}{-b^7}+\frac{1}{b^7}+\frac{1}{c^7}=\frac{1}{c^7}\left(1\right)\)

\(\frac{1}{a^7+b^7+c^7}=\frac{1}{-b^7+b^7+c^7}=\frac{1}{c^7}\left(2\right)\)

Từ (1) và (2) => \(\frac{1}{a^7}+\frac{1}{b^7}+\frac{1}{c^7}=\frac{1}{a^7+b^7+c^7}\)

Tương tự với b =- c và c = -a ta cũng chứng minh được đẳng thức trên 

=> ĐPCM 

Bình luận (0)
 Khách vãng lai đã xóa