Giải hệ phương trình
\(\hept{\begin{cases}x+y+z=3\\2xy-2y-z^2=4\end{cases}}\)
giải hệ phương trình :\(\hept{\begin{cases}x+y+z=2\\2xy-z^2=4\end{cases}}\)
Giải hệ phương trình:
a)\(\hept{\begin{cases}2x+3y=9\\x-3=y-2\end{cases}}\)
b)\(\hept{\begin{cases}2x+3y+z=81\\x+2y-z=-2\\x-y=z-2y\end{cases}}\)
Giải hệ phương trình \(\hept{\begin{cases}x+y+z=2\\2xy-z^2=4\end{cases}}\)
\(\hept{\begin{cases}x+y+z=2\\2xy-z^2=4\end{cases}}\)
\(\Rightarrow2xy-x^2=\left(x+y+z\right)^2=4\)
\(\Leftrightarrow2xy-z^2=x^2+y^2+z^2+2xy+2yz+2zx\)
\(\Leftrightarrow x^2+y^2+2z^2+2yz+2zx=0\)
\(\Leftrightarrow\left(x^2+2zx+z^2\right)+\left(y^2+2yz+z^2\right)=0\)
\(\Leftrightarrow\left(x+z\right)^2+\left(x+y\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+z=0\end{cases}}\)
Vì x+y=0 ; mà x+y+z=2 => z=2
Thay z=2 vào PT(2) thì 2xy-4=4 => xy=4
Ta có hệ :
\(\hept{\begin{cases}x+y=0\\xy=4\end{cases}}\)( Vô nghiệm )
Vậy PT vô nghiệm
Giải hệ phương trình \(\hept{\begin{cases}x+y+z=2\\2xy-z^2=4\end{cases}}\)
\(4-2xy+\left(2-x-y\right)^2=0\)
\(\Leftrightarrow y^2+x^2-4x-4y+8=0\)
\(\Leftrightarrow\left(y-2\right)^2+\left(x-2\right)^2=0\)
giải hệ phương trình :
\(\hept{\begin{cases}x+y+z=2\\2xy-z^2=4\end{cases}}\)
(Tưởng đề sai! 3 ẩn mà thấy có 2 pt à... Ai ngờ đề đúng)
Từ pt đầu suy ra \(z=2-x-y\), thế xuống pt sau ta có:
\(2xy-\left(2-x-y\right)^2=4\)
Biến đổi tương đương ta có \(\left(x-2\right)^2+\left(y-2\right)^2=0\).
Từ đây suy ra \(x=y=2\) (vì cả 2 số là bình phương đều lớn hơn bằng 0, mà tổng của chúng bằng 0 thì buộc mỗi số bằng 0)
Vậy \(z=-2\). Thử lại thấy thoả.
giải hệ phương trình:
a)\(\hept{\begin{cases}x^2+y^2+z^2=8\\xy+yz+xz=4\\x+y+z=4\end{cases}}\)
b)\(\hept{\begin{cases}x^4+x^3y+9y=y^3x+x^2y^2\\xy^3-x^4=7\end{cases}}\).
giải hệ phương trình: \(\hept{\begin{cases}2xy=x+y+2\\2yz=y+z+17\\2zx=z+x+3\end{cases}}\)
Giải hệ phương trình :
1, \(\hept{\begin{cases}x+y+z=3xy\\x^2+y^2+z^2=3xz\\x^3+y^3+z^3=3yz\end{cases}}\)
2,\(\hept{\begin{cases}x^3-y^3=9\\x^2+2y^2=x-4y\end{cases}}\)
giải hệ phương trình
1)\(\hept{\begin{cases}x^2+xy+y^2=3\\x^3+2y^3=y+2x\end{cases}}\)
2) \(\hept{\begin{cases}\frac{y^2+1}{y}=\frac{x^2+1}{x}\\x^2+3y^2=4\end{cases}}\)
3)\(\hept{\begin{cases}x^2+y^4-2xy^3=0\\x^2+2y^2-2xy=1\end{cases}}\)
2 \(\hept{\begin{cases}\frac{x^2+1}{y}=\frac{y^2+1}{y}\left(1\right)\\x^2+3y^2=4\left(2\right)\end{cases}}\)
ĐK \(x,y\ne0\)
Từ \(\frac{y^2+1}{y}=\frac{x^2+1}{x}\Leftrightarrow xy^2+x=x^2y+y\Leftrightarrow\left(xy-1\right)\left(x-y\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=y\\xy=1\end{cases}}\)
+ thay \(x=y\)vào (2) ta dc ..................
+xy=1 suy ra 1=1/y thay vao 2 ta dc............