CMR: \(\frac{n^5}{5}+\frac{n^3}{3}+\frac{7n}{15}\)là số nguyên với n thuộc Z
a)cmr:
\(\frac{n^5}{5}+\frac{n^3}{3}+\frac{7n}{15}\) là số nguyên với mọi n ∈Z∈Z
b)cmr:với n chẵn thì \(\frac{n}{12}+\frac{n^2}{8}+\frac{n^3}{24}\) là số nguyên
a, Ta có: \(\frac{n^5}{5}+\frac{n^3}{3}+\frac{7n}{15}=\frac{n^5-n}{5}+\frac{n}{5}+\frac{n^3-n}{3}+\frac{n}{3}+\frac{7n}{15}\)
\(=\frac{n^5-n}{5}+\frac{n^3-n}{3}+n\)
Chứng minh \(n^5-n⋮5\Rightarrow\frac{n^5-n}{5}\in Z\)
\(n^3-n⋮3\Rightarrow\frac{n^3-n}{3}\in Z\)
\(\Rightarrow\frac{n^5-n}{5}+\frac{n^3-n}{3}+n\in Z\)
=> Đpcm
b, Tương tự dùng tính chất chia hết
cho n thuộc n sao cho \(^{7n^2+2}\) chia hết cho 15.CMR các phân số sau tối giản:\(\frac{3}{n};\frac{5}{n};\frac{n}{3};\frac{n}{5}\)Giúp tớ với gấp!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Chứng minh rằng biểu thức sau là số nguyên với mọi n nguyên:
a) \(\frac{n^5}{5}+\frac{n^3}{3}+\frac{7n}{15}\)
sao lớp 6 mk đã gạp rùi nhỉ
Với n là số nguyên. CMR: các biểu thức sau đều là số nguyên
A= \(\frac{n^5}{120}+\frac{n^4}{12}+\frac{7n^3}{24}+\frac{5n^2}{12}+\frac{n}{5}\)
B= \(\frac{n^5}{5}+\frac{n^3}{3}+\frac{7n}{15}\)
C= \(\frac{n^3}{24}+\frac{n^2}{8}+\frac{n}{12}\)(Với n là số chắn)
+ Ta có : \(n^5-n=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)
+ \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)là tích 5 số nguyên liên tiếp
\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\)
\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)⋮5\)
\(\Rightarrow n^5-n⋮5\)
+ \(n^3-n=\left(n-1\right)n\left(n+1\right)⋮3\)
\(B=\frac{n^5-n}{5}+\frac{n^3-n}{3}+\frac{7n}{15}+\frac{n}{5}+\frac{n}{3}\)
\(=\frac{n^5-n}{5}+\frac{n^3-n}{3}+\frac{15n}{15}\)
=> B là số nguyên
\(A=\frac{n^5+10n^4+35n^3+50n^2+24n}{120}\) \(=\frac{n\left[n^3\left(n+1\right)+9n^2\left(n+1\right)+26n\left(n+1\right)+24\left(n+1\right)\right]}{120}\)
\(=\frac{n\left(n+1\right)\left[n^3+9n^2+26n+24\right]}{120}\) \(=\frac{n\left(n+1\right)\left[n^2\left(n+2\right)+7n\left(n+2\right)+12\left(n+2\right)\right]}{120}\)
\(=\frac{n\left(n+1\right)\left(n+2\right)\left(n^2+7n+12\right)}{120}\) \(=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)}{120}\)
+ \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)\)là tích 5 số nguyên liên tiếp\
\(\Rightarrow\left\{{}\begin{matrix}n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮3\\n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮5\end{matrix}\right.\) (1)
+ trong 5 số nguyên liên tiếp tồn tại ít nhất 2 số chẵn liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮8\) ( do tích 2 số chẵn liên tiếp chia hết cho 8 ) (2)
+ Từ (1) và (2) => \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮120\)
=> đpcm
+ \(C=\frac{n^3+3n^2+2n}{24}=\frac{n\left(n+1\right)\left(n+2\right)}{24}\)
+ \(n\left(n+1\right)\left(n+2\right)\) là tích 3 số nguyên liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\) (3)
+ n và n + 2 là 2 số chẵn liên tiếp
\(\Rightarrow n\left(n+2\right)⋮8\Rightarrow n\left(n+1\right)\left(n+2\right)⋮8\) (4)
+ Từ (3) và (4) \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮24\)
=> C là số nguyên
Cho\(A=\frac{n^5}{5}+\frac{n^3}{3}+...+\frac{7Xn}{15}\)
Chứng minh rằng A là số nguyên với n thuộc Z
NHỚ GIẢI BÀI BẢN RA NHA
a, Chứng minh rằng \(\frac{n^5}{5}\)+ \(\frac{n^3}{3}\)+ \(\frac{7^n}{15}\)là số nguyên với mọi 5 thuộc Z
b, Với mọi n là số chẵn \(\frac{n}{12}\)+ \(\frac{n^2}{8}\)+ \(\frac{n^3}{24}\)là số nguyên
Giúp mik vs nha mọi người. Sẽ tick cho ai nhanh trả lời nhanh nhất!!
CMR : \(\frac{n^5}{5}+\frac{n^4}{2}+\frac{n^3}{3}-\frac{n}{30}\)THUỘC \(Z\) với mọi \(N\) là số tự nhiên
Ta CM : A= \(6n^5+15n^4+10n^3-n\) chia hết cho 30
+A = \(\left(6n^5+15n^4+9n^3\right)+\left(n^3-n\right)\)= \(\left(6n^5+15n^4+9n^3\right)+\left(n-1\right)n\left(n+1\right)\) => A chia hết cho 3 với mọi n thuộc N
+A= \(\left(6n^5+14n^4+10n^3\right)+\left(n^4-n\right)\) = \(\left(6n^5+14n^4+10n^3\right)+n\left(n-1\right)\left(n^2+n+1\right)\)=> A chia hết cho 2 .
+ A = \(\left(5n^5+15n^4+10n^3\right)+\left(n^5-n\right)\)= \(\left(5n^5+15n^4+10n^3\right)+n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\) chiaa hết cho 5 ( bạn chứng minh ccais cuối chia hết cho 5 = 5 TH)
=> A chia hết cho 2 .3.5 = 30
=> dpcm
bài 1. CMR: n4-1 chia hết cho 8 với mọi n lẻ
bài 2. CMR: B=\(\frac{n^3}{6}+\frac{n^2}{2}+\frac{n}{3}\)là số nguyên với mọi n thuộc Z
bài 3. CMR: (n2+n-1)2 -1 chia hết cho 24 với mọi n thuộc Z
\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
n lẻ
=> n - 1 và n + 1 chẵn
Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8
=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)
ai giải giúp mình bài 2 và bài 3 với
Bài 5 : Chứng minh rằng
a)\(\left(n+3\right)^2-\left(n-1\right)^2\) chia hết cho 8 với mọi n ∈ N
b) A = \(\frac{n^5}{120}+\frac{n^4}{12}+\frac{7n^3}{24}+\frac{5n^2}{12}+\frac{n}{5}\) có giá trị nguyên với mọi n ∈ Z
a, (n+3)2-(n-1)2
= n2+6n+9-n2+2n-1
= 8n + 8
= 8(n+1) chia hết cho 8