CMR: tỒN TẠI 1 SỐ TẬN CÙNG BỞI 4 CHỮ SỐ : 1972 VÀ CHIA HẾT CHO 1971
cmr tồn tại hay ko 1 số tự nhiên có 4 chữ số tận cùng là 2022 chia hết cho 2021
các bạn giúp mình với ^v^
đó thế ai mà biết được
1) CMR tồn tại 1 số gồm toàn chữ số 6 chia hết cho 2003
2)CMR tồn tại hay không 1 số tự nhiên só tận cùng là 2002 chia hết cho 2003
3) Cho 2001 số bất kì.CMR có thể chonk 1 hoặc 1 số số mà tổng của chúng chia hết cho 2001
4) Trong 1 tam giác đều cạnh là 1.Ta đặt 17 điểm kể cả trên các cạnh.CMR tồn tai 2 điểm mà khoảng cách giữa chúng nhỏ hơn hoặc bằng 1/4
Dùng nguyên lí Dirichle để giải các bài tập sau:
1) Viết 20 số tự nhiên vào 20 tấm bìa. CMR: Ta có thể chọn 1 hay nhiều tấm bìa để tổng các số đó chia hết cho 20
2) CMR: tồn tại 1 số tự nhiên chia hết cho 17
a) Gồm toàn chữ số 1 và chữ số 0
b) Gồm toàn chữ số 1
3) CMR: Tồn tại số tự nhiên k để 3k có 3 chữ số tận cùng là 001
4) CHo 51 số tự nhiên khác 0 và không vượt quá 100. CMR:
a) Mỗi số đều viết được 2k.b(k;b thuộc N, b lẻ, k có thể = 0). Xác định khoảng giá trị của k và b
b) Tồn tại 2 số mà số này là bội của số kia
Cmr tồn tại 1 số chỉ viết bởi 2 chữ số chia hết cho 2003
Cho A là 1 số tận cùng không chia hết cho 2 và không chia hết cho 5.Chứng minh: Tồn tại 1 bội của A toàn là chữ số 9.
Chứng minh rằng tồn tại một số có 4 chữ số tận cùng là 2019 chia hết cho số 2018
Giải bằng tính chất Dirichlet đấy nhé các bạn
Vào câu hỏi tương tự có bài giống đấy nhé bạn ạ !
Bài toán 1 : Chứng minh rằng mọi số nguyên tố p ta có thể tìm được một số được viết bởi hai chữ số chia hết cho p.
Bài toán 2 : Chứng minh rằng nếu một số tự nhiên không chia hết cho 2 và 5 thì tồn tại bội của nó có dạng : 111...1.
Bài toán 3 : Chứng minh rằng tồn tại số có dạng 1997k (k thuộc N) có tận cùng là 0001.
Bài toán 4 : Chứng minh rằng nếu các số nguyên m và n nguyên tố cùng nhau thì tìm được số tự nhiên k sao cho mk - 1 chia hết cho n
cmr luôn tồn tại số tự nhiên được viết bởi 2 chữ số 2 và 0 chia hết cho 2010
lấy 2010 số được tạo ởi toàn chữ số 2
2; 22; 222; ......; 222...22 (2010 chữ số 2)
lần lượt chia các số trên cho 2010 thì ta sẽ được nhiều nhất 2010 phép chia có dư và các số dư nằm trong khoảng từ 1 đến 2009
Theo nguyên lý dirichlet sẽ có ít nhất hai số khi chia cho 2010 sẽ có cùng số dư
Giả sử hai số đó là A có m chữ số 2 và B có n chữ số 2 (giả sử m>n)
=> A-B=C chia hết cho 2010 trong đó C gồm m-n chữ số 2 và n chữ số 0 (dpcm)
CMR: tồn tại một số tự nhiên chỉ viết bởi hai chữ số 0 và 2 mà số đó chia hết cho 2010
đề đúng . Thuộc phần nguyên lí đi rích lê