Với mọi số tự nhiên n< hoặc bằng , so sánh A với 1 biết : A= 1\2² +1\3²+1\4² ..... +1\n²
với mọi số tự nhiên n>=2 hãy so sánh
a)A=1/2^2+1/3^2+1/4^2+...+1/n^2 với 1
\(\text{a)}A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
với mọi số tự nhiên n lớn hơn hoặc =2 hãy so sánh:
A=1/22+1/33+1/42+...+1/n2 với 1
ai làm được cho nhìu like lun
Với mọi số tự nhiên n \(\ge\)2, so sánh A với 1 biết:
A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}< 1\)( vì n \(\ge\)2 )
bài 1 : cho a = 1/11+1/12+...+1/70 . so sánh a với 5/2
bài 2 : c/m với mọi số tự nhiên n lớn hơn hoặc = 1 ta có :
1/9+1/25+...+1/(2n+1) < 1/4
Với mọi số tự nhiên n ≥ 2 hãy so sánh:
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...\dfrac{1}{n^2}v\text{ới}1\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n-1\right)}\\ A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\left(\dfrac{1}{n}>0\right)\)
Với mọi số tự nhiên n > hoặc = 2, hãy so sánh:
a) A=1/22+1/321/42+..............+1/n2 với 1.
b) B=1/22+1/42+1/62+................+1/(2n)2 với 1/2.
GIÚP MÌNH VỚI ! ! ! !
với mọi số tự nhiên n>=2 hãy so sánh A=1/2 mũ 2+1/3 mũ 3+......+1/n mũ 2 với 1
2) Chứng minh rằng: với mọi số tự nhiên n tích (n+4)(n+7) là số chẵn
3) Tìm x ϵ N biết : a) 101 chia hết cho x - 1
b) (a+3) chia hết cho (a+1)
4) So sánh: \(^{8^9}\) và \(^{9^8}\) (về mũ 5)
Bài 2:
Với $n$ chẵn thì $n+4$ chẵn
$\Rightarrow (n+4)(n+7)$ là số chẵn
Với $n$ lẻ thì $n+7$ chẵn
$\Rightarrow (n+4)(n+7)$ là số chẵn
Vậy $(n+4)(n+7)$ chẵn với mọi số tự nhiên $n$ (đpcm)
Bài 3:
a.
$101\vdots x-1$
$\Rightarrow x-1\in\left\{\pm 1; \pm 101\right\}$
$\Rightarrow x\in\left\{0; 2; 102; -100\right\}$
Vì $x\in\mathbb{N}$ nên $x=0, x=2$ hoặc $x=102$
b.
$a+3\vdots a+1$
$\Rightarrow (a+1)+2\vdots a+1$
$\Rightarrow 2\vdots a+1$
$\Rightarrow a+1\in\left\{\pm 1; \pm 2\right\}$
$\Rightarrow a\in\left\{0; -2; 1; -3\right\}$
1/So sánh A với 1/4, biết
A= 1/1.2.3+1/2.3.4+1/3.4.5+...+1/2014.2015.2016
2/Chứng minh rằng.Với mọi n thì phân số 7.n+4/5.n+3 là phân số tối giản
3/Cho A=1/11+1/12+1/13+..+1/19+1/20. so sánh A với 1/2
4/số tự nhiên a khi chia cho 7 thì dư 5,chia 13 dư 4 tìm số dư khi chia a cho 91
giúp mình với , mình cần gấp lắm nha(làm cách giải cho mình nha)
1/ So sánh A với \(\frac{1}{4}\)
Có \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.........+\frac{1}{2014.2015.2016}\)
\(A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-.......+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)
\(A=\frac{1}{1.2}-\frac{1}{2015.2016}=\frac{1}{2}-\frac{1}{2015.2016}\)
Vậy \(A>\frac{1}{4}\)