TÍNH A=1.2^2 + 2.3^2 +..........................+2017.2018^2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính A = 1.2^2+2.3^2+3.4^2+....+2017.2018^2
Các bạn giúp mk với. Mk đang cần gấp 😦
Tính A= 1+(1+2)+(1+2+3)+........+(1+2+3+.....+2017)/1.2+2.3+3.4+.......+2017.2018
Tính:
\(A=1.2^2+2.3^2+3.4^2+.....+2017.2018^2\)
Tính A=1+(1+2)+(1+2+3)+....+(1+2+3+.....+2017)/1.2+2.3+3.4+......+2017.2018
Ta có :
\(A=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{\frac{2}{2}+\frac{2\left(2+1\right)}{2}+\frac{3\left(3+1\right)}{2}+...+\frac{2017\left(2017+1\right)}{2}}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{\frac{2}{2}+\frac{2.3}{2}+\frac{3.4}{2}+...+\frac{2017.2018}{2}}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{\frac{1.2+2.3+3.4+...+2017.2018}{2}}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{1.2+2.3+3.4+...+2017.2018}{2}.\frac{1}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{1}{2}\)
Vậy \(A=\frac{1}{2}\)
Chúc bạn học tốt ~
.Tính:
A=1.2^2+2.3^2+3.4^2+...+2017.2018^2
Dau "." là dấu nhân nha các bạn
tinh tong A= 1.2^2+2.3^2+3.4^2+........+2018.2019^2
Tính tổng \(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2017.2018}\)
\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\right)\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\right)\)
\(=2.\left(1-\frac{1}{2018}\right)\)
\(=2.\frac{2017}{2018}\)
\(=\frac{2017}{1009}\)
quy tử số thành 1
A = 2.(1/1.2+1/3.2+1/3.4+... + 1/2017.2018)
A= 2. (1- 1/2018)
Tính nốt nha
A=\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+......+\frac{2}{2017.2018}\)
A=\(2-\frac{2}{2}+\frac{2}{2}-\frac{2}{3}-...\frac{2}{2017}-\frac{2}{2018}\)
A=\(2-\frac{2}{2018}\)
A=\(\frac{1017}{509}\)
A=1.22+2.32+3.42+.......+2017.20182
?A BẰNG BAO NHIÊU?
sorry mọi ng nha,toán 6 chứ ko phải toán 5
(1.2+2.3+......+2017.2018+2018.2019)-(1 mũ2+2 mũ2+.......+2017 mũ2 +2018 mũ 2
(1.2 + 2.3 + 3.4 + ... + 2018.2019) - (12 + 22 + ... + 20182)
= (1.2 + 2.3 + ... + 2018.2019) - (1.1 + 2.2 + ... + 2018.2018)
= (1.2 + 2.3 + ... + 2018.2019) - [1.(2 - 1) + 2.(3 - 1) + ... + 2018.(2019 - 1)]
= (1.2 + 2.3 + ... + 2018.2019) - (1.2 + 2.3 + ... + 2018.2019 - 1 - 2 - 3 - ... - 2018)
= (1.2 + 2.3 + ... + 2018.2019) - [1.2 + 2.3 + ... + 2018.2019 - (1 + 2 + ... + 2018)]
= (1.2 + 2.3 + ... + 2018.2019) - (1.2 + 2.3 + ... + 2018.2019) + (1 + 2 + 3 + ... + 2018)
= 1 + 2 + ... + 2018 (có : (2018 - 1) : 1 + 1 = 2018 (số))
= (2018 + 1).2018 : 2
= 2037171
1.22+2.32+3.42+...+2016.20172+2017.20182