Cho số tự nhiên A = 4+4^2+4^3+...+4^39+4^40 tìm số dư khi đem A chia cho 5
cho số tự nhiên: A=4+42+43+......+449+450.tìm số dư khi đem A chia cho 5
Cho số tự nhiên A= 4+ 42 + 43+ .....+449 +450 .Tìm số dư khi đem A chia hết cho 5
A=(4+42)+(43+44)+.....+(449+450)
A=20+42.(4+42)+....+448.(4+42)
A=20+42.20+....+448.20
A=20.(42+...+448)
A chia het cho 5
1. Tìm số tự nhiên nhỏ nhất biết rằng số đó khi chia cho 3, cho 4, cho 5 đều dư 2, còn chia 7 dư 3.
2. Tìm x, y nguyên biết x+y+xy=40.
3. Khi chia một số tự nhiên a chia cho 4 ta được số dư là 3 còn khi chia a cho 9 thì được số dư là 5. Tìm số dư trong phép chia a cho 36.
2, TA có:
x + y + xy = 40
=> x(y + 1) + y + 1 = 41
=> (x + 1)(y + 1) = 41
=> x + 1 thuộc Ư(41) = {1; 41}
Xét từng trường hợp rồi thay vào tìm y
Có lẽ các bạn thấy hơi dài nhưng các bạn có thể làm 1 trong 3 câu cũng được. Nhưng đừng làm sai nhé! Hihihi...
1, Gọi số cần tìm là A
A chia 3, 4, 5 dư 2 => A - 2 chia hết cho 3, 4 ,5
=> A - 2 thuộc ƯC(3, 4, 5) = {60, 120, 180,...}
Mà A chia 7 dư 3 => A - 3 chia hết cho 7
=> A = 360
a) tìm số tự nhiên có ba chữ số lớn nhất mà khi chia số đó cho 4 dư 3, chia 5 dư 4, chia 6 dư 5
b) tìm số tự nhiên nhỏ hơn 400 mà khi chia số đó cho 2; 3; 4; 5; 6 đều dư 1 và khi chia cho 7 thì không dư
2)Tìm 1 số tự nhiên khi chia cho 7 thì dư 5 , chia cho13 thì dư 4.Nếu đem số đó chia cho 81 thì dư bao nhiêu
A)Cho A=4+42+43+44+45+… +424 .chứng minh rằng
Achia hết cho20
Achia hết cho 21
Achia hết cho 420
Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.
Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.
Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.
Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?
Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.
Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.
Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.
1. một số tự nhiên biết khi chia cho 4 ; 5 ; 6 đều dư 1 .Tìm số đó biết rằng số đó chia hết cho 7 và nhỏ hơn 400
2. Một số tự nhiên a khi chia cho 4 thì dư 3 ; chia cho 5 thì dư 4 ; chia cho thì dư 5 . Tìm số tự nhiên a biết rằng 200 nhỏ hơn hoặc bằng a và a nhỏ hơn hoặc bằng 400
1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301
2. Ta thấy \(a+1\)là BC của (4;5;6) và 201 < a + 1 < 401
=> BCNN (4,5,6) = 60 .
BC (4,5,6) = {0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ....}
=> a + 1 = 240 ; a + 1 = 300 hoặc a + 1 = 360 => a = {239 ; 299 ; 359}
Vậy ....
Bài 1:Tìm số tự nhiên nhỏ nhất có 4 chứ số sao cho khi đem chia số đó cho 13 thì được số dư là
Bài 2:Tìm số tự nhiên lướn nhất có 4 chữ số sao cho khi đem chia số đó cho 19 thì được số dư là 3
bài 1 số cần tìm là 1010
bài 2 số cần tìm là 9997
a)tìm số tự nhiên nhỏ nhất khi chia cho 3 dư 2,chia cho 8 dư 4
b)1 số tự nhiên chia cho 3 dư 1,chia cho 4 dư 3,chia cho 5 dư 1.hỏi số đó chia cho 60 dư bao nhiêu