Những câu hỏi liên quan
CD
Xem chi tiết
PH
Xem chi tiết
NP
9 tháng 9 2018 lúc 16:10

\(\orbr{\begin{cases}\hept{\begin{cases}\text{x=2}\\y=0\end{cases}}\\\hept{\begin{cases}\text{x=\text{-}1}\\y=1\end{cases}}\end{cases}}\)

Bình luận (0)
PD
4 tháng 2 2019 lúc 15:18

\(x^2+2y^2+2xy+3y-4=0\)

\(\Leftrightarrow x^2+2xy+y^2+y^2+2.\frac{3}{2}y+\frac{9}{4}-\frac{25}{4}=0\)

\(\Rightarrow\left(x+y\right)^2+\left(y+\frac{3}{2}\right)^2=\frac{25}{4}\)

Do x,y nguyên

\(\Rightarrow\left(y+\frac{3}{2}\right)^2=\orbr{\begin{cases}\frac{25}{4}\\\frac{9}{4}\end{cases}}\)(chọn những số 

\(\Rightarrow y=...\)

\(\Rightarrow x=...\)

Bình luận (0)
KN
25 tháng 7 2020 lúc 16:30

\(x^2+2y^2+2xy+3y-4=0\)\(\Leftrightarrow x^2+2yx+\left(2y^2+3y-4\right)=0\)

Coi đây là phương trình theo ẩn x thì \(\Delta=\left(2y\right)^2-4\left(2y^2+3y-4\right)=-4y^2-12y+16\)

Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(-4y^2-12y+16\ge0\Leftrightarrow y^2+3y-4\le0\Leftrightarrow\left(y+4\right)\left(y-1\right)\le0\)

TH1: \(\hept{\begin{cases}y+4\ge0\\y-1\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge-4\\y\le1\end{cases}}\)hay \(-4\le y\le1\)

TH2: \(\hept{\begin{cases}y+4\le0\\y-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}y\le-4\\y\ge1\end{cases}}\)(loại)

Vậy \(-4\le y\le1\)mà y nguyên nên \(y\in\left\{-4;-3;-2;-1;0;1\right\}\)

Thay lần lượt các giá trị của y vào phương trình đã cho, ta được:

*) \(y=-4\Rightarrow x=4\)

*) \(y=-3\Rightarrow x\in\left\{1;5\right\}\)

*) \(y=-2\)(Không có giá trị nguyên của x)

*) \(y=-1\)(Không có giá trị nguyên của x)

*) \(y=0\Rightarrow x\in\left\{\pm2\right\}\)

*) \(y=1\Rightarrow x=-1\)

Vậy \(\left(x,y\right)\in\left\{\left(4,-4\right);\left(1,-3\right);\left(5,-3\right);\left(\pm2,0\right);\left(-1,1\right)\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
QT
27 tháng 6 2021 lúc 15:16

\(\left(1\right)\Leftrightarrow\left(x+y\right)^2+\left(y^2+3y-4\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2=-\left(y-1\right)\left(y+4\right)\)

\(VT\left(2\right)\ge0\forall x,y\Rightarrow VP\left(2\right)\ge0\Rightarrow\left(y-1\right)\left(y+4\right)\le0\)

\(\Rightarrow\hept{\begin{cases}y-1\le0\\y+4\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}y-1\ge0\\y+4\le0\end{cases}\Rightarrow}-4\le y\le1\)

\(\Rightarrow y\in\left\{-4;-3;-2;-1;0;1\right\}\)

- Thử lại :

\(+)y=-4:\left(2\right)\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)

\(+)y=-3:\left(2\right)\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}}\)

\(+)y=-2:\left(2\right)\Leftrightarrow\left(x-2\right)^2=6\)( vô nghiệm nguyên )

\(+)y=-1:\left(2\right)\Leftrightarrow\left(x-1\right)^2=6\)( vô nghiệm nguyên )

\(+)y=0:\left(2\right)\Leftrightarrow x^2=4\Leftrightarrow x=2;x=-2\)

\(+)y=1:\left(2\right)\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy các nghiệm của hpt là : \(\left(4;-4\right)\);\(\left(5;-3\right)\)\(\left(1;-3\right)\)\(\left(2;0\right)\);\(\left(-2;0\right)\);\(\left(-1;1\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
27 tháng 6 2021 lúc 15:42

Coi (1) là phương trình bậc 2 ẩn x, y là tham số 

(1) có nghiệm <=> Δ' ≥ 0 <=> y2 - ( 2y2 + 3y - 4 ) ≥ 0

<=> -y2 - 3y + 4 ≥ 0 <=> -4 ≤ y ≤ 1

Vì y nguyên => y ∈ { -4 ; -3 ; -2 ; -1 ; 0 ; 1 }

+) Với y = -4 (1) trở thành x2 - 8x + 16 = 0 <=> ( x - 4 )2 = 0 <=> x = 4 (tm)

+) Với y = -3 (1) trở thành x2 - 6x + 5 = 0 <=> ( x - 1 )( x - 5 ) = 0 <=> x = 1 (tm) hoặc x = 5(tm)

+) Với y = -2 (1) trở thành x2 - 4x - 2 = 0 có Δ = 24 không là SCP nên không có nghiệm nguyên

+) Với y = -1 (1) trở thành x2 - 2x - 5 = 0 có Δ = 24 không là SCP nên không có nghiệm nguyên

+) Với y = 0 (1) trở thành x2 - 4 = 0 <=> x = ±2 (tm)

+) Với y = 1 (1) trở thành x2 + 2x + 1 = 0 <=> ( x + 1 )2 = 0 <=> x = -1(tm)

Vậy ( x ; y ) ∈ { ( 4 ; -4 ) , ( 1 ; -3 ) , ( 5 ; -3 ) , ( 2 ; 0 ) , ( -2 ; 0 ) , ( -1 ; 1 ) }

Bình luận (0)
 Khách vãng lai đã xóa
PA
Xem chi tiết
LA
Xem chi tiết
NP
15 tháng 1 2019 lúc 20:34

Bài toán :

x^2 + 2*x*y + 2*y^2 + 3*y-4 = 0

Lời giải:

Tập xác định của phương trình

Rút gọn thừa số chung

Giải phương trình

Nghiệm được xác định dưới dạng hàm ẩn

#

Bình luận (0)
LA
15 tháng 1 2019 lúc 20:38

Bn có thể có lời giải cụ thể cho bài này ko?

Bình luận (0)
H24
8 tháng 2 2019 lúc 16:01

Tham khảo: Câu hỏi của Ngô Minh Tâm - Toán lớp 9 - Học toán với OnlineMath

Bình luận (0)
NT
Xem chi tiết
BV
14 tháng 11 2017 lúc 10:43

Ta có \(x^2+2xy+y^2+y^2=4-3y\)\(\Leftrightarrow\left(x+y\right)^2+y^2=4-3y\).
Suy ra \(4-3y>0\Leftrightarrow3y< 4\).
Do y nguyên dương nên \(y=1\).
Thay vào phương trình ta có: \(\left(x+1\right)^2+1^2=4-3.1\) \(\Leftrightarrow\left(x+1\right)^2=0\)\(\Leftrightarrow x+1=0\)\(\Leftrightarrow x=-1\). (Loại vì x nguyên dương).
Vậy không có giá trị nào của x thỏa mãn.

Bình luận (0)
H24
8 tháng 2 2019 lúc 15:53

\(x^2+2y^2+2xy+3y-4=0\)

\(\Leftrightarrow x^2+2xy+\left(2y^2+3y-4\right)=0\)

Coi phương trình trên có ẩn là x.

Phương trình có nghiệm khi \(\Delta'=y^2-\left(2y^2+3y-4\right)\ge0\)

\(\Leftrightarrow-y^2-3y+4\ge0\)\(\Leftrightarrow y^2+3y-4\le0\)

\(\Leftrightarrow\left(y-1\right)\left(y+4\right)\le0\Leftrightarrow-4\le y\le1\)

Thay vào từng giá trị nguyên của y để tìm x=)

Bình luận (0)
MC
Xem chi tiết
AP
Xem chi tiết
AH
17 tháng 12 2017 lúc 15:45

Lời giải:

Xét PT \(x^2+2y^2+2xy+3y-4=0\)

\(\Leftrightarrow x^2+(2y).x+(2y^2+3y-4)=0\)

Coi PT trên là phương trình bậc 2 ẩn x, để pt có nghiệm thì:

\(\Delta'=y^2-(2y^2+3y-4)\geq 0\)

\(\Leftrightarrow -y^2-3y+4\geq 0\)

\(\Leftrightarrow (1-y)(4+y)\geq 0\)

\(\Leftrightarrow -4\leq y\leq 1\). Vì \(y\in\mathbb{Z}\Rightarrow y\in\left\{-4; -3;-2;-1;0;1\right\}\)

Thay từng TH vào pt ban đầu ta thu được:

+) \(y=-4\rightarrow x=4\)

+) \(y=-3\rightarrow x=1;x=5\)

+) \(y=-2\rightarrow x\not\in\mathbb{Z}\)(loại)

+) \(y=-1\rightarrow x\not\in\mathbb{Z}\) (loại)

+) \(y=0\rightarrow x=\pm 2\)

+) \(y=1\rightarrow x=-1\)

Bình luận (0)
DT
17 tháng 12 2017 lúc 17:13

Người hay giúp bạn khác trả lời bài tập sẽ trở thành học sinh giỏi. Người hay hỏi bài thì không. Còn bạn thì sao?

Bình luận (0)
NA
Xem chi tiết
ND
18 tháng 1 2021 lúc 13:41

a) Ta có: \(x^2+2y^2+2z^2-2xy-2yz-2z=4\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2z+1\right)=5\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-1\right)^2=5\)

Mà \(5=0^2+1^2+2^2\) nên ta có dễ dàng xét được các TH

Làm tiếp nhé!

Bình luận (0)
 Khách vãng lai đã xóa
ND
18 tháng 1 2021 lúc 13:49

b) Ta có: \(x^2+13y^2-6xy=100\)

\(\Leftrightarrow\left(x^2-6xy+9y^2\right)+4y^2=100\)

\(\Leftrightarrow\left(x-3y\right)^2=100-4y^2\)

Mà \(\hept{\begin{cases}\left(x-3y\right)^2\ge0\\100-4y^2\le100\end{cases}}\Rightarrow0\le100-4y^2\le100\)

\(\Rightarrow y\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5\right\}\)

Ta có các TH sau:

Nếu \(y=0\Rightarrow x^2=100\Rightarrow x=\pm10\)

Nếu \(y=\pm3\Leftrightarrow\orbr{\begin{cases}\left(x-9\right)^2=64\\\left(x+9\right)^2=64\end{cases}}\Rightarrow x\in\left\{17;1;-17;-1\right\}\)

... Tự làm tiếp nhé

Bình luận (0)
 Khách vãng lai đã xóa