Những câu hỏi liên quan
EC
Xem chi tiết
H24
24 tháng 10 2018 lúc 16:07

\(a=7+\left(7^2+7^4\right)+\left(7^3+7^5\right)+...\left(7^{2017}+7^{2019}\right)\)

\(a=7+7^2.\left(1+7^2\right)+7^3.\left(1+7^2\right)+...+7^{2017}.\left(1+7^2\right)\)

\(a=7+7^2.50+7^3.50+...+7^{2017}.50\)

\(a=7+50.\left(7^2+7^3+...+7^{2017}\right)\)

\(7⋮̸50,50.\left(7^2+7^3+...+7^{2017}\right)⋮50=>a⋮̸50\)

Bình luận (0)
HN
Xem chi tiết
NK
Xem chi tiết
BH
21 tháng 3 2018 lúc 11:32

a/ Ta có: S-7 = 72+73+...+749

Nhận thấy, S-7 có tất cả 48 số hạng. Nhóm 3 số hạng liên tiếp với nhau ta được:

S-7 = (72+73+74)+...(747+748+749) = 72(1+7+72)+75(1+7+72)+...+747(1+7+72)=(1+7+72)(72+75+...+747)

=> S - 7 = 19.(72+75+...+747)  => S-7 chia hết cho 19

b/ S = 7+72+73+...+749  => 7S=72+73+...+749+750

=> 7S-S=(72+73+...+749+750)-(7+72+73+...+749)

<=> 6S=750 - 7  => 6S-7 = 750  => Đpcm

Bình luận (0)
BH
21 tháng 3 2018 lúc 11:32

Câu b) là 6S+7 thì đúng hơn

Bình luận (0)
NK
Xem chi tiết
LH
Xem chi tiết
H24
30 tháng 10 2023 lúc 21:05

Bài 4: Để tìm các chữ số a, b thỏa mãn các điều kiện, ta sẽ kiểm tra từng trường hợp.

a. Để số 4a12b chia hết cho 2, 5 và 9, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 2, nên b phải là số chẵn. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Vì số chia hết cho 9, nên tổng các chữ số trong số đó phải chia hết cho 9. Ta thử từng trường hợp:

Nếu b = 0, thì tổng các chữ số là 4 + a + 1 + 2 + 0 = 7 + a. Để 7 + a chia hết cho 9, ta có a = 2. Nếu b = 5, thì tổng các chữ số là 4 + a + 1 + 2 + 5 = 12 + a. Để 12 + a chia hết cho 9, ta có a = 6.

Vậy, các giá trị thỏa mãn là a = 2 hoặc a = 6, và b = 0 hoặc b = 5.

b. Để số 5a43b chia hết cho 2, 3 và 5, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 2, nên b phải là số chẵn. Vì số chia hết cho 3, nên tổng các chữ số trong số đó phải chia hết cho 3. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Ta thử từng trường hợp:

Nếu b = 0, thì tổng các chữ số là 5 + a + 4 + 3 + 0 = 12 + a. Để 12 + a chia hết cho 3, ta có a = 0 hoặc a = 3 hoặc a = 6 hoặc a = 9. Nếu b = 5, thì tổng các chữ số là 5 + a + 4 + 3 + 5 = 17 + a. Để 17 + a chia hết cho 3, ta có a = 1 hoặc a = 4 hoặc a = 7.

Vậy, các giá trị thỏa mãn là a = 0 hoặc a = 3 hoặc a = 6 hoặc a = 9, và b = 0 hoặc b = 5.

c. Để số 735a2b chia hết cho 5 và 9, nhưng không chia hết cho 2, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Vì số chia hết cho 9, nên tổng các chữ số trong số đó phải chia hết cho 9. Ta thử từng trường hợp:

Nếu b = 0, thì tổng các chữ số là 7 + 3 + 5 + a + 2 + 0 = 17 + a. Để 17 + a chia hết cho 9, ta có a = 7 hoặc a = 8. Nếu b = 5, thì tổng các chữ số là 7 + 3 + 5 + a + 2 + 5 = 22 + a. Để 22 + a chia hết cho 9, ta có a = 2 hoặc a = 5 hoặc a = 8.

Vậy, các giá trị thỏa mãn là a = 2 hoặc a = 5 hoặc a = 7 hoặc a = 8, và b = 0 hoặc b = 5.

Bài 5: Để xác định xem tổng A có chia hết cho 8 hay không, ta cần tính tổng A và kiểm tra xem nó có chia hết cho 8 hay không.

Bình luận (0)
CB
Xem chi tiết
An
13 tháng 7 2017 lúc 20:54


=718(72+7-1)
=718(49+7-1)
=718 * 55
=718 *5*11 chia hết cho 11
vậy ...

Bình luận (0)
MN
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết