cho ba số a,b,c dương.chứng tỏ M=\(\frac{a}{a+b}=\frac{b}{b+c}=\frac{c}{c+a}\)ko là só nguyên
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1.\(cho\)a,b,c là các số nguyên dương.chứng tỏ rằng :
\(m=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không phải là một số nguyên
Gợi ý : CM : a < m < b
Với m , b là 2 số liêm tiếp
Nhận xét :
\(\frac{a}{a+b}>\frac{a}{a+b+c}\left(1\right)\)
\(\frac{b}{b+c}>\frac{b}{b+c+a}\left(2\right)\)
\(\frac{c}{c+a}>\frac{c}{c+a+b}\left(3\right)\)
Cộng (1) , (2) với (3) ta được :
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=1\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>1\)
Nhận xét 2 :
\(\frac{a}{a+b}< \frac{a+c}{a+b+c}\left(4\right)\)
\(\frac{b}{b+c}< \frac{b+a}{b+c+a}\left(5\right)\)
\(\frac{c}{c+a}< \frac{c+b}{c+a+b}\left(6\right)\)
Cộng (4) , (5) với (6) ta được :
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{b+c+a}+\frac{c+b}{c+a+b}=2\)
Vì \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
=> \(m=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không phải là số nguyên
Với a,b,c,d là các số nguyên dương.Chứng tỏ biểu thức A không là số nguyên
\(A=\frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{d+a}{d+a+b}\)
Cho a;b;c là các số nguyên dương ,chứng tỏ rằng :
M=\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)ko phải là một số nguyên dương.
Ta có:
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a+b+c}{a+b+c}\)
\(\Rightarrow M>1\) (1)
Ta có:
\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)
\(\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{a+b}{a+b+c}\)
\(\frac{c}{c+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{c+b}{a+b+c}\)
\(\Rightarrow M< \frac{2\left(a+b+c\right)}{a+b+c}\)
\(\Rightarrow M< 2\) (2)
Từ (1) và (2) => 1 < M < 2
=> M không phải là một số nguyên dương (đpcm)
áp dụng t/c dãy tỉ số bằng nhau, ta có
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=\frac{a+b+c}{a+b+b+c+c+a}=\frac{a+b+c}{\left(a+b+c\right)\cdot2}=\frac{ }{ }\)\(=\frac{1}{2}\)
=>Vậy nếu a;b;c>0->\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)ko phải là 1 số nguyên dương
k cho mk
Cho a,b,c là các số nguyên dương chứng tỏ rằng :
M = \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) ko phải là 1 số nguyên dương.
\(\frac{a}{b+c}>\frac{a}{a+b+c},\frac{b}{b+c}>\frac{b}{b+c+a},\frac{c}{c+a}>\frac{c}{c+a+b}\)
\(\Rightarrow A>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c},\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{b+a}{b+c+a},\frac{c}{a+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{c+a+b}\)
\(\Rightarrow A< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{c+a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Vậy \(1< A< 2\Rightarrow A\)không phải là một số nguyên dương
Cho ba số a,b,c dương . Chứng tỏ rằng \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không là số nguyên
+) Do a + b + c> a + b \(\Rightarrow\frac{a}{a+b}>\frac{a}{a+b+c}\)
Tương tự \(\frac{b}{b+c}>\frac{b}{a+b+c},\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)(1)
Lại có a < a + b \(\Rightarrow\frac{a}{a+b}< 1\Rightarrow\frac{a+c}{a+b+c}>\frac{a}{a+b}\)
Tương tự \(\frac{b}{b+c}< \frac{b+a}{a+b+c},\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
\(\Rightarrow M< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(2)
Từ (1) và (2) => 1<M<2 => M không phải là số nguyên
Vì a,b,c dương, ta có:
\(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\) (*)
Lại có: \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=\frac{a+b-b}{a+b}+\frac{b+c-c}{b+c}+\frac{c+a-a}{c+a}=3-\left(\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{c+a}\right)\)
Chứng minh tương tự (*) ta có: \(\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{c+a}>1\)
\(\Rightarrow M< 3-1=2\) (**)
Từ (*) và (**) => 1 < M < 2 => đpcm
Cho a,b,c là ba số dương.Chứng minh rằng: \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\)
cho a,b,c,d là các số nguyên dương. Chứng tỏ rằng:
\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) ko phải là số nguyên
Cho a,b,c,d là các số nguyên dương.Chứng tỏ rằng:
1<\(\frac{a}{a+b+c}\)+ \(\frac{b}{b+c+d}\)+ \(\frac{c}{c+d+a}\)+\(\frac{d}{d+a+b}\)<2
https://olm.vn/hoi-dap/detail/8596118254.html
tham khảo
Cho a,b,c là các số thực dương.Chứng minh rằng
\(\frac{ab}{c}\)+\(\frac{bc}{a}\)+\(\frac{ca}{b}\)\(\ge\)a+b+c
Áp dụng bđt AM - GM cho a,b,c thực dương :
\(\left\{{}\begin{matrix}\dfrac{ab}{c}+\dfrac{bc}{a}\ge2\sqrt{b^2}=2b\\\dfrac{bc}{a}+\dfrac{ac}{b}\ge2c\\\dfrac{ab}{c}+\dfrac{ac}{b}\ge2a\end{matrix}\right.\)
\(\Leftrightarrow2.\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge\left(a+b+c\right)\)
Dấu "=" ⇔ a = b =c