Những câu hỏi liên quan
PK
Xem chi tiết
DH
Xem chi tiết
AN
Xem chi tiết
H24
Xem chi tiết
CA
Xem chi tiết
H24
4 tháng 7 2019 lúc 21:21

#)Giải :

Đặt \(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{3^n}\left(n\in N\right)\)

\(\Rightarrow A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^n}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}\)

\(\Rightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^n}\right)\)

\(\Rightarrow2A=1-\frac{1}{3^n}\)

\(\Rightarrow A=\frac{1-\frac{1}{3^n}}{2}\)

Bình luận (0)
GM
4 tháng 7 2019 lúc 21:33

S1 S2 S3 S4 A B C D

Giả sử ABCD là một hình vuông có cạnh là 1 đơn vị. Diện tích hình đó là 1.

Diện tích hình chữ nhật S1 bằng \(\frac{1}{3}\) hình vuông nên có diện tích là:

S1 = \(\frac{1}{3}\)

Chia ba phần còn lại của hình vuông ABCD, ta được hình vuông S2. Diện tích hình S2 bằng\(\frac{1}{9}\)hình vuông ABCD nên:

S2 = \(\frac{1}{9}\)

Tiếp tục chia ba phần con lại của của hình vuông ABCD, ta được hình chữ nhật S3 có diện tích:

S3 = \(\frac{1}{27}\)

Tiếp tục làm như thế và cộng lại, ta có:

S1 + S2 + S3 + S4 + S5 + S6 + ... = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+...\)

Như vậy càng kéo dài tổng diện tích của các hình đó thì tổng ấy sẽ tiến dần đến diện tích hinh vuông ABCD, hay nói cách khác:

S1 + S2 + S3 + S4 + S5 + S6 + ... = SABCD

hoặc  \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+...\)= 1

Bình luận (0)
H24
Xem chi tiết
VA
20 tháng 4 2017 lúc 8:48

\(A=\frac{2010}{2011}\)

Bình luận (0)
HV
Xem chi tiết
AK
8 tháng 4 2018 lúc 17:52

\(B=\frac{1010+1007+\frac{2017}{113}+\frac{2017}{117}-\frac{1010}{119}-\frac{1007}{119}}{1010+1008+\frac{2018}{113}+\frac{2018}{117}-\frac{1010}{119}-\frac{1008}{119}}\)

\(B=\frac{2017+\frac{2017}{113}+\frac{2017}{117}-\frac{2017}{119}}{2018+\frac{2018}{113}+\frac{2018}{117}-\frac{2018}{119}}\)

\(B=\frac{2017.\left(1+\frac{1}{113}+\frac{1}{117}-\frac{1}{119}\right)}{2018.\left(1+\frac{1}{113}+\frac{1}{117}-\frac{1}{119}\right)}\)

\(B=\frac{2017}{2018}\)

Vậy \(B=\frac{2017}{2018}\)

Chúc bạn học tốt !!! 

Bình luận (0)
HL
14 tháng 8 2018 lúc 21:15

dễ lắm thử nghỉ đi banj

Bình luận (0)
H24
Xem chi tiết
KN
30 tháng 4 2019 lúc 8:12

Đề ???

\(A=\frac{1003+1007+\frac{2010}{113}+\frac{2010}{117}-\frac{1003}{119}-\frac{1007}{119}}{1003+1008+\frac{2011}{113}+\frac{2011}{117}-\frac{1003}{119}-\frac{1008}{119}}\)

\(=\frac{2010+\frac{2010}{113}+\frac{2010}{117}-\frac{2010}{119}}{2011+\frac{2011}{113}+\frac{2011}{117}-\frac{2011}{119}}\)

\(=\frac{2010.\left(1+\frac{1}{113}+\frac{1}{117}-\frac{1}{119}\right)}{2011.\left(1+\frac{1}{113}+\frac{1}{117}-\frac{1}{119}\right)}\)

\(=\frac{2010}{2011}\)

Bình luận (0)
DT
30 tháng 4 2019 lúc 8:15

\(A=\frac{1003+1007+\frac{2010}{113}+\frac{2010}{117}-\frac{100}{119}-\frac{1007}{119}}{1003+1008+\frac{2011}{113}+\frac{2011}{117}-\frac{1003}{119}-\frac{1008}{119}}\)

\(A=\frac{1003+1008+\frac{2011}{113}+\frac{2011}{117}-\frac{1003}{119}-\frac{1008}{119}}{1003+1008+\frac{2011}{113}+\frac{2011}{117}-\frac{1003}{119}-\frac{1008}{119}}\)+       \(\frac{1+\frac{1}{113}+\frac{1}{117}-\frac{903}{119}-\frac{1}{119}}{1003+1008+\frac{2011}{113}+\frac{2011}{117}-\frac{1003}{119}-\frac{1008}{119}}\)          

\(A=1+\frac{1+\frac{1}{113}+\frac{1}{117}-\frac{904}{119}}{2011+\frac{2011}{113}+\frac{2011}{117}-\frac{2011}{119}}\) 

\(A=\frac{1+\frac{1}{113}+\frac{1}{117}-\frac{1}{119}-\frac{90.}{119}}{2011+2011.\left(\frac{1}{113}+\frac{1}{117}-\frac{1}{119}\right)}\)

\(A=\frac{\frac{90}{119}}{2010+2011}\)

\(A=\frac{\frac{90}{119}}{4021}\)

                             

Bình luận (0)
H24
30 tháng 4 2019 lúc 10:14

cho mình hỏi làm thế nào để k cho người khác vậy?????

Bình luận (0)
KK
Xem chi tiết