cho a,b,c lớn hơn hoặc bằng 0 và thỏa mãn ab+bc+ac=1
tim Min P= 1/(a+b) +1/(b+c) + 1/(a+c)
1Cho x,y >1 . Chứng minh : x2/(y-1) + y2/ (x-1) lớn hơn hoặc bằng 8
2 Cho a,b,c,d >=0 . Chứng minh : (a+b)(a+b+c)(a+b+c+d) / abcd lớn hơn hoặc bằng 64
3 Cho a,b,c >= 0 . Chứng minh : (a+b+c)(ab+bc+ac) lớn hơn hoặc bằng 8(a+b)(b+c)(c+a) / 9
4 Cho a,b,c >=0 và a+b+c =1 . Chứng minh : bc/√(a+bc) + ac/√(b+ac) + ab/√(c+ab) bé hơn hoặc bằng 1/2
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2
Cho a,b,c thỏa mãn a^2 + b^2 + c^2 =1 Cm: abc+2(1+a+b+c+ab+ac+bc) lớn hơn bằng 0
Vi a^2+b^2+c^2=1
=>-1=<a,b,c=<1
=>(1+a)(1+b)(1+c)>=0
=>1+abc+ab+bc+ca+a+b+c>=0 (1*)
Lại có (a+b+c+1)^2/2>=0
=>[a^2+b^2+c^2+1+2a+2b+2c+2ab+2bc+2ca
]/2>=0
=>[2+2a+2b+2c+2ab+2bc+2ca]/2>=0 (Thay a^2+b^2+c^2=1)
=>1+a+b+c+ab+bc+ca>=0 (2*)
tu (1*)(2*) ta co abc+2(1+a+b+c+ab+bc+ca)>=0
dau = xay ra <=>a+b+c=-1 va a^2+b^2+c^2=1
<=>a=0,b=0,c=-1 va cac hoan vi cua no
Vì a^2+b^2+c^2=1
=>-1=<a,b,c=<1
=>(1+a)(1+b)(1+c)>=0
=>1+abc+ab+bc+ca+a+b+c>=0 (1*)
Lại có (a+b+c+1)^2/2>=0
=>[a^2+b^2+c^2+1+2a+2b+2c+2ab+2bc+2ca
]/2>=0
=>[2+2a+2b+2c+2ab+2bc+2ca]/2>=0 (Thay a^2+b^2+c^2=1)
=>1+a+b+c+ab+bc+ca>=0 (2*)
tu (1*)(2*) ta co abc+2(1+a+b+c+ab+bc+ca)>=0
dau = xay ra <=>a+b+c=-1 va a^2+b^2+c^2=1
<=>a=0,b=0,c=-1 và các hoan vi của nó
Vì a^2+b^2+c^2=1
=>-1=<a,b,c=<1
=>(1+a)(1+b)(1+c)>=0
=>1+abc+ab+bc+ca+a+b+c>=0 (1*)
Lại có (a+b+c+1)^2/2>=0
=>[a^2+b^2+c^2+1+2a+2b+2c+2ab+2bc+2ca
]/2>=0
=>[2+2a+2b+2c+2ab+2bc+2ca]/2>=0 (Thay a^2+b^2+c^2=1)
=>1+a+b+c+ab+bc+ca>=0 (2*)
tu (1*)(2*) ta co abc+2(1+a+b+c+ab+bc+ca)>=0
dau = xay ra <=>a+b+c=-1 va a^2+b^2+c^2=1
<=>a=0,b=0,c=-1 và các hoan vi của nó
cho a,b,c,d là các số hữu tỉ thỏa mãn ab=1 và ac+bd=2
Chứng minh : 1-cd lớn hơn hoặc bằng 0
Cho a, b, c dương thỏa mãn a+b+c bé hơn hoặc bằng 1
Tìm Min P=\(\frac{1}{a^2+b^2+c^2}\) +\(\frac{2019}{ab+bc+ca}\)
Cho 3 số a; b; c thỏa mãn: 1/ab + 1/ac + 1/bc > 0 và ab + ac + bc > 0. Chứng minh rằng 3 số a; b; c cùng âm hoặc cùng dương
1/cho a, b,c lớn hơn hoặc bằng 0 và a+b+c=3 CMRa/(a+2bc)+b/(b+2ac)+c/(c+2a) \(\ge\)1
2/cho a, b,c lớn hơn hoặc bằng 0 và a+b+c=3 CMR:a/(2a+bc) +b/(2b+ac) +c/(2c+ab) \(\le\)1
Cho a,b,c thỏa mãn -1< a,b,c< 3,a+b+c=3.Chứng minh ab+bc+ca>-1
tất cả dấu lớn ,bé hơn đều có bé,lớn hơn hoặc bằng nhé
Cho a,b lớn hơn 0 thỏa mãn a+b lớn hơn hoặc bằng 1
Tìm min: (8a² +b)/4a +b²
cho x,y,z>0 thỏa mãn ab+bc+ca=3abc.Tìm min \(\sqrt{\frac{ab}{a+b+1}}+\sqrt{\frac{bc}{b+c+1}}+\sqrt{\frac{ac}{a+c+1}}\)
Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\) \(\left(x,y,z>0\right)\)
Theo đề \(ab+bc+ca=3abc\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=\frac{3}{xyz}\)
\(\Rightarrow x+y+z=3\)
Và \(\sqrt{\frac{ab}{a+b+1}}+\sqrt{\frac{bc}{b+c+1}}+\sqrt{\frac{ca}{c+a+1}}\)
\(=\sqrt{\frac{\frac{1}{xy}}{\frac{1}{x}+\frac{1}{y}+1}}+\sqrt{\frac{\frac{1}{yz}}{\frac{1}{y}+\frac{1}{z}+1}}+\sqrt{\frac{\frac{1}{zx}}{\frac{1}{z}+\frac{1}{x}+1}}\)
\(=\frac{1}{\sqrt{x+y+xy}}+\frac{1}{\sqrt{y+z+yz}}+\frac{1}{\sqrt{z+x+zx}}\)
\(\ge\frac{9}{\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}}\) (Cauchy Schwarz)
Ta có: \(\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\)
\(=\sqrt{\left(\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\right)^2}\)
\(\le\sqrt{3\left(x+y+xy+y+z+yz+z+x+zx\right)}\)
\(=\sqrt{\left[2\left(x+y+z\right)+\left(xy+yz+zx\right)\right]}\)
\(\le\sqrt{6+\frac{\left(x+y+z\right)^2}{3}}=\sqrt{6+\frac{3^2}{3}}=3\)
\(\Rightarrow\sqrt{\frac{ab}{a+b+1}}+\sqrt{\frac{bc}{b+c+1}}+\sqrt{\frac{ca}{c+a+1}}\)
\(\ge\frac{9}{\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}}\ge\frac{9}{3}=3\)
Dấu "=" xảy ra khi: \(x=y=z=1\Rightarrow a=b=c=1\)
cảm ơn bạn :>
Line 11:
...\(=\sqrt{3\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)
\(\le\sqrt{3\left[6+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(6+3\right)}=3\sqrt{3}\)
\(\Rightarrow VT\ge\frac{9}{3\sqrt{3}}=\sqrt{3}\)
Dấu "=" xảy ra khi: \(a=b=c=1\)