Những câu hỏi liên quan
HG
Xem chi tiết
MT
19 tháng 7 2015 lúc 19:05

Cách 1:

Đặt : \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

suy ra: \(\frac{a}{c}=\frac{bk}{dk}=\frac{b}{d}\)

\(\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b.\left(k+1\right)}{d.\left(k+1\right)}=\frac{b}{d}\)

=> ĐPCM

Cách 2:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

=>ĐPCM

Cách 3: 

\(\frac{a}{c}=\frac{a+b}{c+d}\Rightarrow a.\left(c+d\right)=c.\left(a+b\right)\)

a.c+a.d=a.c+c.b

a.d=c.b

=>\(\frac{a}{b}=\frac{c}{d}\)(là giả thiết)

=>ĐPCM

Bình luận (0)
HG
Xem chi tiết
NT
19 tháng 7 2015 lúc 18:11

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}=\frac{a+b}{c+d}\)

Bình luận (0)
HG
Xem chi tiết
DH
Xem chi tiết
HT
20 tháng 10 2015 lúc 18:59

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc=ad-bd=bc-bd=d.\left(a-b\right)=b.\left(c-d\right)\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)Đúng 100% tick nha

 

Bình luận (0)
LC
Xem chi tiết
NP
19 tháng 10 2014 lúc 22:34

a) ở lop 8 đã được học hằng đẳng thức a^3+b^3+c^3 rùi. áp dụng vào bài này thì ta có 

a^3+b^3+c^3-3abc=(a^3+b^3+c^3)-3abc=(a+b+c).[a^2+b^2+c^2-(ab+ac+bc)]+3abc-3abc=(a+b+c)[a^2+b^2+c^2-(ab+ac+bc)]

Bình luận (0)
NP
19 tháng 10 2014 lúc 22:36

mai hương làm đúng rùi nhưng ở bước cuối bạn viết nhầm. là -ab chứ ko phải là -3ab

Bình luận (0)
MH
19 tháng 10 2014 lúc 21:30

mình làm đk câu a thui :

trong chương trình lớp 8 bạn còn nhớ cái bài 31 là chứng minh a3+b3=(a+b)3-3ab(a+b) ko??

coi như chúng minh đk rùi , thay vào ta có :

a3+b3+c3-3abc=(a+b)3-3ab(a+b)+c3-3abc

                      =((a+b)3+c3)-(3ab+3abc)

                     =(a+b+c).((a+b)2-(a+b).c+c2)-3ab.(a+b+c)

                     =(a+b+c).((a+b)2-(a+b).c+c2-3ab)

                    = (a+b+c).(a2+2ab+b2-ac-bc+c2-3ab)

có thể sắp xếp lại cho dễ nhìn =(a+b+c).(a2+b2+c2-ac-bc-3ab)

(ko biết mình đánh sai chỗ nào ko bạn kiểm tra lại nhé)

Bình luận (0)
TV
Xem chi tiết
BC
Xem chi tiết
LH
Xem chi tiết
DH
19 tháng 7 2017 lúc 13:32

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3abc-3a^2b-3ab^2=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\) (luôn đúng vì \(a+b+c=0\))

Vậy \(a^3+b^3+c^3=3abc\)

Bình luận (0)
ND
Xem chi tiết