Những câu hỏi liên quan
H24
Xem chi tiết
BH
2 tháng 5 2017 lúc 17:03

Ta có: \(\frac{3}{1^2.2^2}=\frac{1}{1^2}-\frac{1}{2^2}\)\(\frac{5}{2^2.3^2}=\frac{1}{2^2}-\frac{1}{3^2}\)\(\frac{7}{3^2.4^2}=\frac{1}{3^2}-\frac{1}{4^2}\);....; \(\frac{4031}{2015^2.2016^2}=\frac{1}{2015^2}-\frac{1}{2016^2}\)

=> \(A=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2015^2}-\frac{1}{2016^2}\)

=> \(A=1-\frac{1}{2016^2}< 1\)

=> A < 1

Bình luận (0)
TK
Xem chi tiết
TK
Xem chi tiết
TB
Xem chi tiết
NT
Xem chi tiết
H24
2 tháng 12 2018 lúc 14:29

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+....+\frac{4031}{2015^2.2016^2}=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-.....-\frac{1}{2016^2}=1-\frac{1}{2016^2}\)

\(\frac{1}{2016^2}>0\Rightarrow A< 1\left(ĐPCM\right)\)

bạn chờ xíu mk lm câu sau nha

Bình luận (0)
H24
2 tháng 12 2018 lúc 14:27

Bạn chờ xíu mk lm cho xong nha

Bình luận (0)
H24
2 tháng 12 2018 lúc 14:35

\(Taco:\)

\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x};x,y,z\inℕ^∗\)

\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)

\(\Rightarrow P>1\)

Giả sử: \(x>y>z\)

\(\Rightarrow\frac{y}{y+z}+\frac{z}{z+x}< \frac{x+y}{y+z}=1;\frac{x}{x+y}< 1\Rightarrow P< 1+1=2\Rightarrow1< P< 2\left(ĐPCM\right)\)

Bình luận (0)
NA
Xem chi tiết
DX
Xem chi tiết
LH
2 tháng 7 2021 lúc 8:55

\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)

\(=\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+...+\dfrac{19}{81.100}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{81}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}< 1\left(dpcm\right)\) 

Bình luận (0)
TQ
10 tháng 10 2022 lúc 18:49

CS AI XEM S** KO

Bình luận (0)
PA
Xem chi tiết
DT
1 tháng 8 2015 lúc 16:21

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\left(\frac{1}{1^2}-\frac{1}{2^2}\right)+\left(\frac{1}{2^2}-\frac{1}{3^2}\right)+\left(\frac{1}{3^2}-\frac{1}{4^2}\right)+...+\left(\frac{1}{9^2}-\frac{1}{10^2}\right)\)

\(=\frac{1}{1}-\frac{1}{10^2}\)

\(=1-\frac{1}{100}

Bình luận (0)
FZ
1 tháng 8 2015 lúc 16:25

=3/1.4+5/4.9+7/9.16+......+19/81.100

=(1/1-1/4)+(1/4-1/9)+........+(1/81-1/100)

=1-1/100

=99/100<1(đpcm)

Bình luận (0)
H24
6 tháng 4 2016 lúc 20:55

toán lp 7 à? lp 6 bọn mink KT 1 tiết đó

Bình luận (0)
AH
Xem chi tiết
LL
30 tháng 9 2021 lúc 21:37

\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)

\(=\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+...+\dfrac{19}{81.100}\)\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{81}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}< 1\)

Bình luận (0)