Những câu hỏi liên quan
TM
Xem chi tiết
KT
24 tháng 7 2018 lúc 21:52

mk làm mẫu 2 bài đầu nhé, các bài còn lại bạn làm tương tự, các bài này đều áp dụng tính chất dãy tỉ số bằng nhau

1)  Áp dụng tính chất dãy tỉ số bằng nhau ta có     

\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)

suy ra:  \(\frac{x}{3}=2\)=>  \(x=6\)

            \(\frac{y}{4}=2\)=>  \(y=8\)

Vậy...

2)  Áp dụng tính chất dãy tỉ số bằng nhau ta có:

   \(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10\)

suy ra:  \(\frac{x}{5}=10\)=>  \(x=50\)

             \(\frac{y}{3}=10\)=>  \(y=30\)

Vậy...

Bình luận (0)
LD
Xem chi tiết
NP
Xem chi tiết
TH
3 tháng 10 2018 lúc 22:23

cậu đang on à

Bình luận (0)
TH
3 tháng 10 2018 lúc 22:27

ủa mk mới chỉ hỏi cậu thui mà

Bình luận (0)
sd
12 tháng 11 2019 lúc 10:49

TRẦN thu hiền ơi 

đây là nơi giải toán nehs

Bình luận (0)
 Khách vãng lai đã xóa
OO
Xem chi tiết
HP
9 tháng 4 2016 lúc 14:31

Theo t/c dãy tỉ số=nhau:

\(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}=\frac{2x^3+2y^3}{12}=\frac{2x^3+2y^3+x^3-2y^3}{12+4}=\frac{3x^3}{16}\) (hơi tắt tí)

\(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}=\frac{x^3+y^3-\left(x^3-2y^3\right)^{ }}{6-4}=\frac{3y^3}{2}\)

Do đó \(\frac{3x^3}{16}=\frac{3y^3}{4}=>\frac{x^3}{8}=y^3=>\frac{x^6}{64}=y^6\)

\(=>\left(\frac{x^6}{64}\right).y^6=y^6.y^6=>\frac{x^6.y^6}{64}=y^{12}=\frac{64}{64}=1\)

=>y=1 hoặc y=-1

x=2 hoặc x=-2

Vậy....................
 

Bình luận (1)
NH
Xem chi tiết
NH
Xem chi tiết

Bài nay nhiều cách giải . Bạn đặt k đi. MK đang bận để mai kt nên k kịp giải . Để tối mai mk giải cho

Bình luận (0)
VP
Xem chi tiết
TG
30 tháng 3 2020 lúc 16:19

a/ 2x = 5y và x - 2y = -12

Ta có: 2x = 5y => \(\frac{x}{5}=\frac{y}{2}\)

Áp dụng: tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5+2}=\frac{x-2y}{5+2.2}=\frac{-12}{9}=-\frac{4}{3}\)

\(\frac{x}{5}=-\frac{4}{3}\Rightarrow x=\frac{-4}{3}.5=-\frac{20}{3}\)

\(\frac{y}{2}=-\frac{4}{3}\Rightarrow y=-\frac{4}{3}.2=-\frac{8}{3}\)

Vậy:.................

b/ 2x = 3y = 4z và x + y + z =21

Ta có: 2x = 3y = 4z

=> \(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)

=> \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)

Áp dụng: tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{21}{13}\)

\(\frac{x}{6}=\frac{21}{13}\Rightarrow x=\frac{21}{13}.6=\frac{126}{13}\)

\(\frac{y}{4}=\frac{21}{13}\Rightarrow y=\frac{21}{13}.4=\frac{84}{13}\)

\(\frac{z}{3}=\frac{21}{13}\Rightarrow z=\frac{21}{13}.3=\frac{63}{13}\)

Vậy:...............

c/Áp dụng: tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{32}{8}=4\)

\(\frac{x}{3}=4\Rightarrow x=4.3=12\)

\(\frac{y}{5}=4\Rightarrow y=4.5=20\)

Vậy:................

d/ Ta có: 7x = 3y

=> \(\frac{7x}{21}=\frac{3y}{21}\)

=> \(\frac{x}{3}=\frac{y}{7}\)

Áp dụng: tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)

\(\frac{x}{4}=-4\Rightarrow x=\left(-4\right).4=-16\)

\(\frac{y}{7}=-4\Rightarrow y=\left(-4\right).7=-28\)

Vậy:................

Bình luận (0)
 Khách vãng lai đã xóa
BC
30 tháng 3 2020 lúc 16:36

1,\(2x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x}{5}=\frac{2y}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{2y}{4}=\frac{x-2y}{5-4}=\frac{-12}{1}=-12\)

Do đó:

\(\frac{x}{5}=-12\Rightarrow x=-60\)

\(\frac{2y}{4}=-12\Leftrightarrow\frac{y}{2}=-12\Rightarrow x=-24\)

Vây x = -60,y = -24

2, 2x = 3y = 4z \(\Rightarrow BCNN\left(2;3;4\right)=12\)

nên \(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{21}{13}\)

Do đó

\(\frac{x}{6}=\frac{21}{13}\Rightarrow x=\frac{6.21}{13}=\frac{126}{13}\)

\(\frac{y}{4}=\frac{21}{13}\Rightarrow y=\frac{4.21}{13}=\frac{84}{13}\)

\(\frac{z}{3}=\frac{21}{13}\Rightarrow z=\frac{3.21}{13}=\frac{63}{13}\)

Một số bài toán về đại lượng tỉ lệ thuậnMột số bài toán về đại lượng tỉ lệ thuận

Bình luận (0)
 Khách vãng lai đã xóa
TG
30 tháng 3 2020 lúc 16:42

f/ \(\frac{x}{3}=\frac{y}{5};\frac{y}{2}=\frac{z}{7}\)

=> \(\frac{x}{6}=\frac{y}{10};\frac{y}{10}=\frac{z}{35}\)

=> \(\frac{x}{6}=\frac{y}{10}=\frac{z}{35}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{6}=\frac{y}{10}=\frac{z}{35}=\frac{x+y+z}{6+10+35}=\frac{102}{51}=2\)

\(\frac{x}{6}=2\Rightarrow x=2.6=12\)

\(\frac{y}{10}=2\Rightarrow y=2.10=20\)

\(\frac{z}{35}=2\Rightarrow z=2.35=70\)

Vậy:.................

h/ Đăt: \(\frac{x}{3}=\frac{y}{16}=k\)

\(\frac{x}{3}=k\Rightarrow x=3k\)

\(\frac{y}{16}=k\Rightarrow y=16k\)

Ta có: x. y = 192

=> 3k. 16k = 192

=> k2. (3. 16) = 192

=> k2. 48 = 192

=> k2 = 192 : 48 = 4

=> k = \(\pm\) 2

*Với k = 2

\(\frac{x}{3}=k\Rightarrow x=3.k=3.2=6\)

\(\frac{y}{16}=k\Rightarrow y=16.k=16.2=32\)

*Với k = -2

\(\frac{x}{3}=k\Rightarrow x=3.k=3.\left(-2\right)=-6\)

\(\frac{y}{16}=k\Rightarrow y=16.k=16.\left(-2\right)=-32\)

Vậy:..........

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
TD
Xem chi tiết