Những câu hỏi liên quan
BM
Xem chi tiết
ZZ
22 tháng 11 2019 lúc 20:57

\(x^2+2y^2-3xy+2x-4y+3=0\)

\(\Leftrightarrow4x^2+8y^2-12xy+8x-16y+12=0\)

\(\Leftrightarrow\left(4x^2-12xy+9y^2\right)-y^2+8x-16y+12=0\)

\(\Leftrightarrow\left(2x-3y\right)^2+4\left(2x-3y\right)+4-\left(y^2-4y+4\right)+6=0\)

\(\Leftrightarrow\left(2x-3y+2\right)^2-\left(y-2\right)^2+6=0\)

\(\Leftrightarrow\left(2x-3y+2-y+2\right)\left(2x-3y+2+y-2\right)=-6\)

\(\Leftrightarrow\left(2x-4y+4\right)\left(2x-2y\right)=-6\)

\(\Leftrightarrow\left(x-2y+2\right)\left(x-y\right)=-\frac{3}{2}\)

Đến đây ta thấy vô lý

P/S:is that true ?

Bình luận (0)
 Khách vãng lai đã xóa
DP
13 tháng 2 2022 lúc 0:06

=-12 mà CTV

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
KG
Xem chi tiết
XO
15 tháng 8 2023 lúc 12:07

Có : x2 - y2 + 2x - 4y - 10 = 0

<=> (x + 1)2 - (y + 2)2 = 7

<=> (x + y + 3)(x - y - 1) = 7

Lập bảng ta được 

x + y + 3 7 1 -1 -7
x - y - 1 1 7 -7 -1
x 3 3 -5 -5
y 1 -5 1 -5

Vì x,y \(\inℕ^∗\) nên (x;y) = (3;1) là giá trị thỏa mãn

Bình luận (0)
H24
Xem chi tiết
TQ
Xem chi tiết
ND
Xem chi tiết
KB
9 tháng 11 2018 lúc 4:52

\(x^2+2y^2-3xy+2x-4y+3=0\)

\(\Leftrightarrow\left(x^2-3xy+\frac{9}{4}y^2\right)+2\left(x-\frac{3}{2}y\right)+1-\left(\frac{1}{4}y^2+y+1\right)+3=0\)

\(\Leftrightarrow\left(x-\frac{3}{2}y\right)^2+2\left(x-\frac{3}{2}y\right)+1-\left(\frac{1}{2}y+1\right)^2+3=0\)

\(\Leftrightarrow\left(x-\frac{3}{2}y+1\right)^2-\left(\frac{1}{2}y+1\right)^2=-3\)

\(\Leftrightarrow\left(x-\frac{3}{2}y+1-\frac{1}{2}y-1\right)\left(x-\frac{3}{2}y+1+\frac{1}{2}y+1\right)=-3\)

\(\Leftrightarrow\left(x-2y\right)\left(x-y+2\right)=-3\)

Đến đây tự làm ( Dễ ) 

Bình luận (0)
PS
Xem chi tiết
TH
Xem chi tiết
TP
5 tháng 4 2017 lúc 5:54

tớ không biết

Bình luận (0)
TH
5 tháng 4 2017 lúc 19:43

cj lậy chú

nhây vừa thoi

Bình luận (0)
H24
Xem chi tiết
TT
27 tháng 6 2017 lúc 11:13

Áp dụng BĐT Cô-si ta có:

\(2x^2+3xy+4y^2\ge3\sqrt[3]{2x^2\cdot3xy\cdot4y^2}=3\sqrt[3]{24x^3y^3}\Rightarrow\sqrt{2x^2+3xy+4y^2}\ge\sqrt{xy\cdot3\sqrt[3]{24}}\)

Tương tự: \(\sqrt{2y^2+3yz+4z^2}\ge\sqrt{yz\cdot3\sqrt[3]{24}}\);  \(\sqrt{2z^2+3zx+4x^2}\ge\sqrt{zx\cdot3\sqrt[3]{24}}\)

Cộng theo vế 3 BĐT vừa tìm, ta được:

\(P\ge\sqrt{3\sqrt[3]{24}}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\sqrt{3\sqrt[3]{24}}=\sqrt[6]{648}\)

Bình luận (0)
H24
27 tháng 6 2017 lúc 11:40

Xem lại đề .
Có lẽ là 2x^2+3xy+2y^2 ((:

Bình luận (0)
TK
2 tháng 8 2019 lúc 22:32

Áp dụng BĐT Buniacoxki ta có

\(\left(2x^2+3xy+4y^2\right)\left(2+3+4\right)\ge\left(2x+3\sqrt{xy}+4y\right)^2\)

=> \(\sqrt{2x^2+3xy+4y^2}\ge\frac{2x+3\sqrt{xy}+4y}{3}\)

Khi đó

\(P\ge\frac{1}{3}\left(6x+6y+6z+3\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)\right)\)

Lại có \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)

=> \(P\ge3\left(\sqrt{yz}+\sqrt{xy}+\sqrt{xz}\right)=3\)

MinP=3 khi \(x=y=z=\frac{1}{3}\)

Bình luận (0)