Những câu hỏi liên quan
DA
Xem chi tiết
TT
Xem chi tiết
VH
9 tháng 6 2017 lúc 22:43

ta có a2014 và a2016 có cùng số dư khi chia cho 2 và 3 nên a2014 và a2016 có cùng số dư khi chia cho 6.

ta có b2015 và b2017 có cùng số dư khi chia cho 2 và 3 nên b2015 và b2017 có cùng số dư khi chia cho 6.

ta có c2016 và c2018 có cùng số dư khi chia cho 2 và 3 nên c2016 và c2018 có cùng số dư khi chia cho 6.

do đó a2014 + b2015 + c2016 và a2016 + b2017 + c2018 có cùng số dư khi chia cho 6 hay a2014 + b2015 + c2016 chia hết cho 6 thì a2016 + b2017 + c2018 cũng chia hết cho 6.

Bình luận (0)
TT
Xem chi tiết
VC
25 tháng 9 2017 lúc 18:38

ta có \(\left(a-3\right);\left(b+2017\right)⋮6\Rightarrow\hept{\begin{cases}\left(a-3\right);\left(b+2017\right)⋮2\\\left(a-3\right)\left(b+2017\right)⋮3\end{cases}}\)

xét cả 2 cái chia hết cho 2 trước thì ta có a và b cùng lẻ

xét 2 cái chia hết ho 3 thì ta có 

a chia hết cho 3 và và b chi 3 dư 2

ở đây ta dùng mod thì cậu có 

\(4\equiv1\left(mod3\right)\Rightarrow4^a\equiv1\left(mod3\right)\)

mà \(a\equiv0\left(mod3\right)\)

      \(b\equiv2\left(mod3\right)\)

=> \(4^a+a+b\equiv0\left(mod3\right)\) => \(4^a+a+b⋮3\) (1) 

mặt khác ta có a,b lẻ => a+b chia hết cho 2 

mà \(4^a⋮2\)

=> \(4^a+a+b⋮2\) (2) 

từ (1) và (2) 

=> \(4^a+a+b⋮6\) (ĐPCM)

Bình luận (0)
TD
Xem chi tiết
KK
Xem chi tiết
TT
Xem chi tiết
H24
5 tháng 11 2017 lúc 16:16

ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.

Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
TQ
Xem chi tiết
AN
4 tháng 8 2017 lúc 8:49

1/ Chứng minh nó chia hết cho 3:

Nếu cả x,y đều không chia hết cho 3 thì x2, y2 chia cho 3 dư 1.

\(\Rightarrow z^2=x^2+y^2\) chia cho 3 dư 2. Mà không có số chính phương chia 3 dư 2 nên ít nhất x, y chia hết cho 3.

\(\Rightarrow xy⋮3\)

Chứng minh chia hết cho 4.

Nếu cả x, y đều chẵn thì \(xy⋮4\)

Nếu trong x, y có 1 số lẻ (giả sử là x) thì z là số lẻ

\(\Rightarrow x=2k+1;y=2m;z=2n+1\)

\(\Rightarrow4m^2=4n^2+4n+1-4k^2-4k-1=4\left(n^2+n-k^2-k\right)\)

\(\Rightarrow m^2=\left(n^2+n-k^2-k\right)\)

\(\Rightarrow m⋮2\)

\(\Rightarrow y⋮4\)

\(\Rightarrow xy⋮4\)

Với x, y đều lẻ nên z chẵn

\(\Rightarrow x^2=4m+1;y^2=4n+1;z^2=4p\)

\(\Rightarrow\)Không tồn tại x, y, z nguyên thỏa cái này

Vậy \(xy⋮4\)

Từ chứng minh trên 

\(\Rightarrow xy⋮12\)

Bình luận (0)
AN
4 tháng 8 2017 lúc 8:56

2/ \(a+b=c+d\)

\(\Leftrightarrow\left(a+b\right)^2=\left(c+d\right)^2\)

\(\Leftrightarrow2ab=2cd\)

\(\Leftrightarrow-2ab=-2cd\)

\(\Leftrightarrow\left(a-b\right)^2=\left(c-d\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}a-b=c-d\\a-b=d-c\end{cases}}\)

Kết hợp với \(a+b=c+d\)

\(\Leftrightarrow\orbr{\begin{cases}a=c\\a=d\end{cases}}\)

\(\RightarrowĐPCM\)

Bình luận (0)
TQ
4 tháng 8 2017 lúc 21:03

nhóc con rảnh hơi

Bình luận (0)