CMR: hai số 5n+ 7 và 3n+ 4 ( n thuộc N ) là hai số nguyên tố cùng nhau
CMR: hai số 5n+7 và 3n+ 4 ( n thuộc N ) là hai số nguyên tố cùng nhau
Gọi d là ƯCLN(5n+7, 3n+4), d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}5n+7⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(5n+7\right)⋮d\\5\left(3n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}15n+21⋮d\\15n+20⋮d\end{cases}}}\)
\(\Rightarrow\left(15n+21\right)-\left(15n+20\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(5n+7,3n+4\right)=1\)
\(\Rightarrow\) 5n+7 và 3n+4 là hai số nguyên tố cùng nhau.
Bài 2: CMR
a,7n+10 và 5n+7 là 2 số nguyên tố cùng nhau (n thuộc N)
b,2n+1 và 6n+5 là 2 số nguyên tố cùng nhau ( n thuộc N )
c,n+1 và 3n+4 là 2 số nguyên tố cùng nhau ( n thuộc N )
Ta có : k là ƯCLN của 7n + 10 và 5n + 7
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k
Hay 5(7n + 10 ) và 7(5n + 7 )
35n + 50 và 35n + 49 chia hết cho k
=> ĐPCM
Hai bài kia bạn làm tương tư nhé , chúc may mắn
CMR: Hai số 2n+5 và 3n+ 7 ( n thuộc N ) là hai số nguyên tố cùng nhau
Gọi x là ƯC của 2.n+5 va 3.n +7
2.n+5 chia hết cho x=> 3{2n+5} chia hết cho x
3n+7 chia hết cho x => 2{3n+7} chia hết cho x
3{2n+5} - 2{3n+7chia hết cho x
6n+15 - 6n+14 chia hết cho x
=>1 chia hết cho x
Gọi ƯC(2n+5,3n+7)=d
Ta có: 2n+5 chia hết cho d=>3.(2n+5)=6n+15 chia hết cho d
3n+7 chia hết cho d=>2.(3n+7)=6n+14 chia hết cho d
=>6n+15-(6n+14) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯC(2n+5,3n+7)=1
=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
Chứng minh rằng:
a, 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (n thuộc N )
b, 5n + 7 và 3n + 4 là 2 số nguyên tố cùng nhau (n thuộc N )
a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Chứng minh rằng:với mọi n thuộc N thì hai số:
a) 3n + 4 và 2n + 3 là hai số nguyên tố cùng nhau
b) 5n +1 và 6n + 1 là hai số nguyên tố cùng nhau
giải giúp tôi với
a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra:
3n+4 chia hết cho d ; 2n+3 chia hết cho d
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d (1)
Lại có : 3.(2n+3) :d
=> 6n+9 : d (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d
=> 1 : d
=> 3n+4 và 2n+3 nguyên tố cùng nhau
Phần b tương tự, kk cho mìnhh nha
a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra:
3n+4 chia hết cho d ; 2n+3 chia hết cho d
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d (1)
Lại có : 3.(2n+3) :d
=> 6n+9 : d (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d
=> 1 : d
=> 3n+4 và 2n+3 nguyên tố cùng nhau
Biết rằng hai số 3n+1 và 5n+4 (với n thuộc N) không nguyên tố cùng nhau. Tìm (3n+1,5n+4)
chứng minh rằng hai số 3n+2 và 5n+3 là hai số nguyên tố cùng nhau (mọi n đều thuộc vào N*)
Gọi d thuộc ƯC(3n+2, 5n+3) thì
3(5n+3) - 5(3n+2) chia hết cho d => 1chia hết cho d => d = 1
Vì ƯCLN(3n+2, 5n+3)=1 nên hai số 3n+2 và 5n+3 là hai số nguyên tố cung nhau
Cho hai số ; 3n + 1 và 5n+4 (n thuộc N)là 2 số nguyên tố cùng nhau.Tìm ƯCLNcủa hai số đó
chứng tỏ rằng hai số tự nhiên 3n + 2 và 5n + 3 ( n thuộc N*) là 2 số nguyên tố cùng nhau ?